Question

In: Chemistry

Calculate ΔG° for the following reaction as written Ni2+ (aq) + Sn (s) → Ni (s)...

Calculate ΔG° for the following reaction as written

Ni2+ (aq) + Sn (s) → Ni (s) + Sn2+ (aq)

given the following reduction half-reactions and standard reduction potentials.

Sn2+ (aq) + 2 e- → Sn (s)      E° = -0.15V

Ni2+ (aq) + 2 e- → Ni (s)      E° = -0.25V

Solutions

Expert Solution

anode reaction: oxidation takes place

Sn(s) -------------------------> Sn+2 (aq) + 2e-   ,   E0Sn+2/Sn = - 0.15 V

cathode reaction : reduction takes palce

Ni+2(aq) + 2e- -----------------------------> Ni(s) , E0Ni+2/Ni = -0.25V

--------------------------------------------------------------------------------

net reaction: Ni2+ (aq) + Sn (s) → Ni (s) + Sn2+ (aq)

E0cell= E0cathode- E0anode

E0cell= E0Ni+2/Ni - E0Sn+2/Sn

          = -0.25 - (-0.15)

          = -0.10 V

detla G0 = -nF Ecell0

              = - 2x 96, 485 x (-0.10)

              = 19297 J

               = 19.3 kJ

ΔG° = 19.3 kJ


Related Solutions

Part A Calculate the equilibrium constant at 25 ∘C for the reaction Ni(s)+2Ag+(aq)→Ni2+(aq)+2Ag(s), if Ni2+(aq)+2e−→Ni(s), E∘...
Part A Calculate the equilibrium constant at 25 ∘C for the reaction Ni(s)+2Ag+(aq)→Ni2+(aq)+2Ag(s), if Ni2+(aq)+2e−→Ni(s), E∘ = -0.26 V, Al+(aq)+e−→Al(s), E∘ = 0.80 V Express your answer using one significant figure. Part B Calculate the equilibrium constant at 25 ∘C for the reaction Hg2+2(aq)→Hg(l)+Hg2+(aq) See Appendix D for standard reduction potentials. Express your answer using one significant figure.
For the following reaction: Ni2+(aq) + Co(s) ⇌ Ni(s) + Co2+(aq) a) Calculate E0 (E^0) b)...
For the following reaction: Ni2+(aq) + Co(s) ⇌ Ni(s) + Co2+(aq) a) Calculate E0 (E^0) b) Calculate G0 (delta G^0) c)Calculate K d) If you start with 10.0 g of Ni and 10.0 g of Co in 100.0 mL solution (containing 1.0 M solution of CoCl2 and 0.0000100 M solution of NiCl2 ) which way the reaction will move toward in order to reach equilibrium? e) Calculate the G (delta G) for the reaction in part d. f)Calculate the equilibrium...
Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq)...
Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq) + 2e- ----->  Zn(s) -0.763V (1) The weakest oxidizing agent is: ___   enter formula (2) The strongest reducing agent is: ___ (3) The strongest oxidizing agent is:___ (4) The weakest reducing agent is: ___ (5) Will Zn(s) reduce Hg2+(aq) to Hg(l)? _____(yes)(no) (6) Which species can be oxidized by Ni2+(aq)? ___ If none, leave box blank.
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45...
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45 Zn2+(aq)+2e−→Zn(s) −0.76 Al3+(aq)+3e−→Al(s) −1.66 Mg2+(aq)+2e−→Mg(s) −2.37 1) Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction: Fe(s)+Ni2+(aq)→Fe2+(aq)+Ni(s) 2) Calculate the standard cell potential (E∘) for the reaction X(s)+Y+(aq)→X+(aq)+Y(s) if K = 3.80×10−4. Express your answer to three significant figures and include the appropriate units.
Calculate the equilibrium constant K of the reaction Sn(s)|Sn2+(aq)||Ag+(aq)|Ag(s) at 25 °C.
Calculate the equilibrium constant K of the reaction Sn(s)|Sn2+(aq)||Ag+(aq)|Ag(s) at 25 °C.
when the following redox reaction is balanced Pb(s) + SnCl4 (aq) -> Sn(s) +PbCl2 (aq) what...
when the following redox reaction is balanced Pb(s) + SnCl4 (aq) -> Sn(s) +PbCl2 (aq) what is the coefficient in front of the species that underwent oxidation?
A voltaic cell employs the following redox reaction: Sn2+(aq)+Mn(s)→Sn(s)+Mn2+(aq) Calculate the cell potential at 25 ∘C...
A voltaic cell employs the following redox reaction: Sn2+(aq)+Mn(s)→Sn(s)+Mn2+(aq) Calculate the cell potential at 25 ∘C under each of the following conditions. A) Standard condition B) [Sn2+]= 1.64×10−2 M ; [Mn2+]= 2.25 M C) [Sn2+]= 2.25 M ; [Mn2+]= 1.64×10−2 M
In the following reaction, the atom being reduced is __________ Ni (s) + CuCl2(aq)  --------------------->  Cu (s) +...
In the following reaction, the atom being reduced is __________ Ni (s) + CuCl2(aq)  --------------------->  Cu (s) + NiCl2 (aq)
(a) Calculate the standard free-energy change (ΔG°) for the following oxidation-reduction reaction. Cu(s) + Br2(aq) →...
(a) Calculate the standard free-energy change (ΔG°) for the following oxidation-reduction reaction. Cu(s) + Br2(aq) → Cu2+(aq) + 2 Br−(aq) (b) Calculate the equilibrium constant for this reaction at 298 K.
1. A voltaic cell is constructed that is based on the following reaction: Sn2+(aq)+Pb(s)→Sn(s)+Pb2+(aq). a. If...
1. A voltaic cell is constructed that is based on the following reaction: Sn2+(aq)+Pb(s)→Sn(s)+Pb2+(aq). a. If the concentration of Sn2+ in the cathode compartment is 1.50 M and the cell generates an emf of 0.22 V , what is the concentration of Pb2+ in the anode compartment? b. If the anode compartment contains [SO2−4]= 1.50 M in equilibrium with PbSO4(s), what is the Kspof PbSO4? 2. A voltaic cell is constructed with two silver-silver chloride electrodes, each of which is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT