Question

In: Chemistry

Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq)...

Half-reaction E° (V)
Hg2+(aq) + 2e- -----> Hg(l) 0.855V
Ni2+(aq) + 2e- -----> Ni(s) -0.250V
Zn2+(aq) + 2e- ----->  Zn(s) -0.763V
(1) The weakest oxidizing agent is: ___   enter formula
(2) The strongest reducing agent is: ___
(3) The strongest oxidizing agent is:___
(4) The weakest reducing agent is: ___


(5) Will Zn(s) reduce Hg2+(aq) to Hg(l)? _____(yes)(no)

(6) Which species can be oxidized by Ni2+(aq)? ___
If none, leave box blank.

Solutions

Expert Solution

A species having the most positive reduction potential has the most tendency to get itself reduced and is a good oxidising agent. A species with the most negative reduction potential has the least tendency to itself get reduced and is a good reducing agent. So we can see that the conversion of Hg​​​​​2+(aq) to Hg(l) has the maximum reduction potential (0.855 V) so Hg​​​​​2+ is the strongest oxidising agent (3) and weakest reducing agent (4). The conversion of Zn​​​​​2+(aq) to Zn (s) has the least reduction potential (-0.763 V) so Zn​​​​​2+ is the strongest reducing agent (2) and weakest oxidising agent (1).

5) As Zn​​​​​2+ is the strongest reducing agent (as it has least reduction potential) from the given options so yes it can reduce Hg​​​​​2+ (as it has the maximum reduction potential among given options)

(6) As the conversion of Ni​​​​​2+(aq) to Ni(s) has reduction potential more than that of conversion of Zn​​​​​2+(aq) to Zn (s) but less than that of the conversion of Hg​​​​​2+(aq) to Hg(l), so Ni2+(aq) has tendency to oxidise Zn(s) to Zn​​​​​2+(aq) and in the process it will itself get reduced to Ni(s).


Related Solutions

Part A Calculate the equilibrium constant at 25 ∘C for the reaction Ni(s)+2Ag+(aq)→Ni2+(aq)+2Ag(s), if Ni2+(aq)+2e−→Ni(s), E∘...
Part A Calculate the equilibrium constant at 25 ∘C for the reaction Ni(s)+2Ag+(aq)→Ni2+(aq)+2Ag(s), if Ni2+(aq)+2e−→Ni(s), E∘ = -0.26 V, Al+(aq)+e−→Al(s), E∘ = 0.80 V Express your answer using one significant figure. Part B Calculate the equilibrium constant at 25 ∘C for the reaction Hg2+2(aq)→Hg(l)+Hg2+(aq) See Appendix D for standard reduction potentials. Express your answer using one significant figure.
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45...
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45 Zn2+(aq)+2e−→Zn(s) −0.76 Al3+(aq)+3e−→Al(s) −1.66 Mg2+(aq)+2e−→Mg(s) −2.37 1) Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction: Fe(s)+Ni2+(aq)→Fe2+(aq)+Ni(s) 2) Calculate the standard cell potential (E∘) for the reaction X(s)+Y+(aq)→X+(aq)+Y(s) if K = 3.80×10−4. Express your answer to three significant figures and include the appropriate units.
a) Consider the following half-reactions: Half-reaction E° (V) F2(g) + 2e- 2F-(aq) 2.870V 2H+(aq) + 2e- H2(g) 0.000V Zn2+(aq) + 2e- Zn(s) -0.763V
13)) a) Consider the following half-reactions: Half-reaction E° (V) F2(g) + 2e- 2F-(aq) 2.870V 2H+(aq) + 2e- H2(g) 0.000V Zn2+(aq) + 2e- Zn(s) -0.763V (1) The weakest oxidizing agent is: enter formula (2) The strongest reducing agent is: (3) The strongest oxidizing agent is: (4) The weakest reducing agent is: (5) Will F-(aq) reduce Zn2+(aq) to Zn(s)? (6) Which species can be reduced by H2(g)? If none, leave box blank. b)) Consider the following half-reactions: Half-reaction E° (V) Ag+(aq) +...
Half-reaction E° (V) Br2(l) + 2e- 2Br-(aq) 1.080V Sn2+(aq) + 2e- Sn(s) -0.140V Al3+(aq) + 3e-...
Half-reaction E° (V) Br2(l) + 2e- 2Br-(aq) 1.080V Sn2+(aq) + 2e- Sn(s) -0.140V Al3+(aq) + 3e- Al(s) -1.660V (1) The weakest oxidizing agent is: enter formula (2) The strongest reducing agent is: (3) The strongest oxidizing agent is: (4) The weakest reducing agent is: (5) Will Al(s) reduce Br2(l) to Br-(aq)? (6) Which species can be oxidized by Sn2+(aq)? If none, leave box blank.
Reduction Half Reaction E (V) Ag2MoO4(s) + 2e- ---> 2 Ag(s) + MoO42-(aq) 0.4573 V Ag+(aq)...
Reduction Half Reaction E (V) Ag2MoO4(s) + 2e- ---> 2 Ag(s) + MoO42-(aq) 0.4573 V Ag+(aq) + e- ---> Ag(s) 0.7996 V a.) Calculate the mass in grams of Ag2MoO4(s) that will dissolve in 2.0 L of water. b.) Calcilate the cell potential of: Ag(s) | Ag2MoO4(s) | MoO42-(aq) (0.010 M) || Ag+(aq) (0.010M) | Ag (s)
For the following reaction: Ni2+(aq) + Co(s) ⇌ Ni(s) + Co2+(aq) a) Calculate E0 (E^0) b)...
For the following reaction: Ni2+(aq) + Co(s) ⇌ Ni(s) + Co2+(aq) a) Calculate E0 (E^0) b) Calculate G0 (delta G^0) c)Calculate K d) If you start with 10.0 g of Ni and 10.0 g of Co in 100.0 mL solution (containing 1.0 M solution of CoCl2 and 0.0000100 M solution of NiCl2 ) which way the reaction will move toward in order to reach equilibrium? e) Calculate the G (delta G) for the reaction in part d. f)Calculate the equilibrium...
Given the following reaction, Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq) E° = 1.10 V. Use...
Given the following reaction, Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq) E° = 1.10 V. Use the Nernst equation to calculate the cell potential for the cell described with standard line notation below. Zn|Zn2+(0.5082 M)||Cu2+(0.2699 M)|Cu Units are not required. Report answer to three decimal places. Please explain all of your steps! Thanks!
a) Consider the following reaction at 298K. 2 Cu2+(aq) + Hg (l) ------>2 Cu+(aq) + Hg2+(aq)...
a) Consider the following reaction at 298K. 2 Cu2+(aq) + Hg (l) ------>2 Cu+(aq) + Hg2+(aq) Which of the following statements are correct? Choose all that apply. n = 1 mol electron The reaction is product-favored. delta Go < 0 Eocell < 0 K < 1 b) Consider the following reaction at 298K. 3 Hg2+(aq) + 2 Cr (s) ------> 3 Hg (l) + 2 Cr3+(aq) Which of the following statements are correct? Choose all that apply. K > 1...
Calculate ΔG° for the following reaction as written Ni2+ (aq) + Sn (s) → Ni (s)...
Calculate ΔG° for the following reaction as written Ni2+ (aq) + Sn (s) → Ni (s) + Sn2+ (aq) given the following reduction half-reactions and standard reduction potentials. Sn2+ (aq) + 2 e- → Sn (s)      E° = -0.15V Ni2+ (aq) + 2 e- → Ni (s)      E° = -0.25V
Complete and balance the following redox reaction in basic solution: Cr2O72-(aq) + Hg(l) ---> Hg2+(aq) +...
Complete and balance the following redox reaction in basic solution: Cr2O72-(aq) + Hg(l) ---> Hg2+(aq) + Cr3+(aq)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT