Question

In: Chemistry

For the following reaction: Ni2+(aq) + Co(s) ⇌ Ni(s) + Co2+(aq) a) Calculate E0 (E^0) b)...

For the following reaction: Ni2+(aq) + Co(s) ⇌ Ni(s) + Co2+(aq)

a) Calculate E0 (E^0)

b) Calculate G0 (delta G^0)

c)Calculate K

d) If you start with 10.0 g of Ni and 10.0 g of Co in 100.0 mL solution (containing 1.0 M solution of CoCl2 and 0.0000100 M solution of NiCl2 ) which way the reaction will move toward in order to reach equilibrium?

e) Calculate the G (delta G) for the reaction in part d.

f)Calculate the equilibrium concentration of Co2+ and Ni2+.

Solutions

Expert Solution


Related Solutions

Part A Calculate the equilibrium constant at 25 ∘C for the reaction Ni(s)+2Ag+(aq)→Ni2+(aq)+2Ag(s), if Ni2+(aq)+2e−→Ni(s), E∘...
Part A Calculate the equilibrium constant at 25 ∘C for the reaction Ni(s)+2Ag+(aq)→Ni2+(aq)+2Ag(s), if Ni2+(aq)+2e−→Ni(s), E∘ = -0.26 V, Al+(aq)+e−→Al(s), E∘ = 0.80 V Express your answer using one significant figure. Part B Calculate the equilibrium constant at 25 ∘C for the reaction Hg2+2(aq)→Hg(l)+Hg2+(aq) See Appendix D for standard reduction potentials. Express your answer using one significant figure.
Calculate ΔG° for the following reaction as written Ni2+ (aq) + Sn (s) → Ni (s)...
Calculate ΔG° for the following reaction as written Ni2+ (aq) + Sn (s) → Ni (s) + Sn2+ (aq) given the following reduction half-reactions and standard reduction potentials. Sn2+ (aq) + 2 e- → Sn (s)      E° = -0.15V Ni2+ (aq) + 2 e- → Ni (s)      E° = -0.25V
Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq)...
Half-reaction E° (V) Hg2+(aq) + 2e- -----> Hg(l) 0.855V Ni2+(aq) + 2e- -----> Ni(s) -0.250V Zn2+(aq) + 2e- ----->  Zn(s) -0.763V (1) The weakest oxidizing agent is: ___   enter formula (2) The strongest reducing agent is: ___ (3) The strongest oxidizing agent is:___ (4) The weakest reducing agent is: ___ (5) Will Zn(s) reduce Hg2+(aq) to Hg(l)? _____(yes)(no) (6) Which species can be oxidized by Ni2+(aq)? ___ If none, leave box blank.
Under standard conditions, Consider the following standard reduction potentials, Ni2+(aq) + 2 e- → Ni(s) E°...
Under standard conditions, Consider the following standard reduction potentials, Ni2+(aq) + 2 e- → Ni(s) E° = -0.26 V I2(s) + 2 e- → 2 I-(aq) E° = +0.54 V Under standard conditions, a)Ni2+(aq) is a stronger oxidizing agent than I2(s) and I-(aq) is a stronger reducing agent than Ni(s). b)I2(s) is a stronger oxidizing agent than Ni2+(aq) and Ni(s) is a stronger reducing agent than I-(aq). c)I-(aq) is a stronger oxidizing agent than Ni(s) and I2(s) is a stronger...
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45...
Reduction half-reaction E∘ (V) Ag+(aq)+e−→Ag(s) 0.80 Cu2+(aq)+2e−→Cu(s) 0.34 Sn4+(aq)+4e−→Sn(s) 0.15 2H+(aq)+2e−→H2(g) 0 Ni2+(aq)+2e−→Ni(s) −0.26 Fe2+(aq)+2e−→Fe(s) −0.45 Zn2+(aq)+2e−→Zn(s) −0.76 Al3+(aq)+3e−→Al(s) −1.66 Mg2+(aq)+2e−→Mg(s) −2.37 1) Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction: Fe(s)+Ni2+(aq)→Fe2+(aq)+Ni(s) 2) Calculate the standard cell potential (E∘) for the reaction X(s)+Y+(aq)→X+(aq)+Y(s) if K = 3.80×10−4. Express your answer to three significant figures and include the appropriate units.
Calculate the standard cell potential for each of the following electrochemical cells. Part A Ni2+(aq)+Mg(s)→Ni(s)+Mg2+(aq) Express...
Calculate the standard cell potential for each of the following electrochemical cells. Part A Ni2+(aq)+Mg(s)→Ni(s)+Mg2+(aq) Express your answer using two decimal places. E∘cell = _____  V Part B 2H+(aq)+Fe(s)→H2(g)+Fe2+(aq) Express your answer using two decimal places E∘cell =_______ V Part C 2NO−3(aq)+8H+(aq)+3Cu(s)→2NO(g)+4H2O(l)+3Cu2+(aq) Express your answer using two decimal places. E∘cell = ________V
Co(s) → Co2+(aq) + 2e Fe2+(aq) + 2e-→ Fe(s) b) Calculate the standard cell potential for...
Co(s) → Co2+(aq) + 2e Fe2+(aq) + 2e-→ Fe(s) b) Calculate the standard cell potential for this voltaic cell. c) Calculate the cell potential for this voltaic cell at 298 K if it is constructed using solutions of 0.14 M Co(NO3)2 and 0.27 M Fe(NO3)2. d) When looking at the magnitude of this potential, what can be concluded about the electrochemical cell?
In the following reaction, the atom being reduced is __________ Ni (s) + CuCl2(aq)  --------------------->  Cu (s) +...
In the following reaction, the atom being reduced is __________ Ni (s) + CuCl2(aq)  --------------------->  Cu (s) + NiCl2 (aq)
From ?b = nˆ ?P = nˆ ? (??0 E), prove that ? = E0 E...
From ?b = nˆ ?P = nˆ ? (??0 E), prove that ? = E0 E = 1+ ? either using capacitor arrangement or Gauss’s law and D = ?0E + P .
Consider the reaction: NiO (s) + CO (g) <=> Ni (s) + CO2(g) Kc=4.0*10^3 (at 1500...
Consider the reaction: NiO (s) + CO (g) <=> Ni (s) + CO2(g) Kc=4.0*10^3 (at 1500 K) If a mixture of 1.00 mol nickel (II)oxide and 0.20 mol carbon monoxide in 2.00 L flask are allowed to come to equilibrium, what is the equilibrium concentration of carbon dioxide?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT