Question

In: Mechanical Engineering

Consider a steam power plant operating on a simple ideal Rankine cycle in which the steam...

Consider a steam power plant operating on a simple ideal Rankine cycle in which the steam enters the turbine at 3 MPa and 350C and is condensed in the condenser at 75 kPa. Determine the thermal efficiency of this cycle and sketch an appropriately labeled T-s diagram. Also compare this thermal efficiency to that a Carnot heat engine operating between these same two limits.

The change in enthalpy across the pump = work done by the pump: h2-h1= v1(P2– P1)

Solutions

Expert Solution

comment down before going for thumbs down if wrong i will correct it and if correct gives thumbs up


Related Solutions

Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine...
Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 15 MPa and 600°C. The steam condenses in the condenser at 10 kPa. Use the EES software to study the effects of the following cases on the cycle performance and to sketch the T-s diagram for each case: #Plot the variation of the cycle thermal efficiency with the turbine isentropic efficiency. Take the isentropic efficiency of the turbine in the range 70% to...
Consider a steam power plant operating on a simple ideal Rankine cycle and having a net...
Consider a steam power plant operating on a simple ideal Rankine cycle and having a net power output of 57 MW. The steam enters the turbine at 9 MPa and 575 ° C and exits at 150 ° C, then it is cooled in the condenser to a pressure of 100 kPa by means of the cooling water from a lake and that circulates through the condenser tubes to a rate of 1370 kg / s. Consider leaving the pump...
The net power of a steam power plant operating according to the simple ideal Rankine cycle...
The net power of a steam power plant operating according to the simple ideal Rankine cycle is 30.5 MW. Water vapor enters the turbine at 7 MPa pressure and 500 ° C, expands to 10 kPa condenser pressure in the turbine. The steam is condensed in the condenser by cooling it with water from a lake. The flow rate of the lake water is 1950 kg / h. Get the pump and turbine adiabatic efficiency of 87%. Show the cycle...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent,...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine...
Ideal Reheat Steam Cycle (10) Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent,...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent, determine: (a) the pressure at...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent, determine: (a) the pressure at...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine...
A steam power plant operates on the simple ideal rankine cycle. the steam enters the turbine at 4 MPa and 500 C and leaves it at 50 kPa and 150 C. the water leaves the condenser as a saturated liquid and is subsequently displaced to the boiler by means of a pump at a temperature of 85 C, which is the isentrophic efficiency of the turbine?
A steam power plant working on a simple ideal Rankine cycle between the pressure limits 85...
A steam power plant working on a simple ideal Rankine cycle between the pressure limits 85 atm and 40 kN/m. The temperature of the steam at the turbine inlet 655. The mass flow rate of steam through the cycle is 52 kes show the cycle on a T-S diagram with respect to the saturation lines and determine: 1) Show the cycle on a block diagram and a TS diagram with respect to saturation lines 2) The turbine inlet temperature. 3)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT