Question

In: Advanced Math

Let A and B be sets, and let R be a relation from A to B....

Let A and B be sets, and let R be a relation from A to B. Prove that Rng(R^-1) = Dom(R)

Solutions

Expert Solution


Related Solutions

Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if...
Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if and only if ad=bc. (a) Show that R is an equivalence relation. (b) What is the equivalence class of (1,2)? List out at least five elements of the equivalence class. (c) Give an interpretation of the equivalence classes for R. [Here, an interpretation is a description of the equivalence classes that is more meaningful than a mere repetition of the definition of R. Hint:...
Let R be the relation on Q defined by a/b R c/d iff ad=bc. Show that...
Let R be the relation on Q defined by a/b R c/d iff ad=bc. Show that R is an equivalence relation. Describe the elements of the equivalence class of 2/3.
Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
Let S = {1,2,3,4} and let A = SxS Define a relation R on A by...
Let S = {1,2,3,4} and let A = SxS Define a relation R on A by (a,b)R(c,d) iff ad = bc Write out each equivalence class (by "write out" I mean tell me explicitly which elements of A are in each equivalence class) Hint: |A| = 16 and there are 11 equivalence classes, so there are several equivalence classes that consist of a single element of A.
Let A, B be sets and f : A → B and g : B →...
Let A, B be sets and f : A → B and g : B → C . Characterize when g ◦ f : A → C is a bijection.
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​...
Let A = R x R, and let a relation S be defined as: “(x​1,​ y​1)​ S (x​2,​ y​2)​ ⬄ points (x​1,​ y​1)​ and (x​2,​ y​2)​are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must​ give a counterexample.
Let A = Σ*, and let R be the relation "shorter than." Determine whether or not...
Let A = Σ*, and let R be the relation "shorter than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let R be the relation on the set of people given by aRb if a and...
Let R be the relation on the set of people given by aRb if a and b have at least one parent in common. Is R an equivalence relation? (Equivalence Relations and Partitions)
Let R be a relation on a set that is reflexive and symmetric but not transitive?...
Let R be a relation on a set that is reflexive and symmetric but not transitive? Let R(x) = {y : x R y}. [Note that R(x) is the same as x / R except that R is not an equivalence relation in this case.] Does the set A = {R(x) : x ∈ A} always/sometimes/never form a partition of A? Prove that your answer is correct. Do not prove by examples.
Let A and B be sets of real numbers such that A ⊂ B. Find a...
Let A and B be sets of real numbers such that A ⊂ B. Find a relation among inf A, inf B, sup A, and sup B. Let A and B be sets of real numbers and write C = A ∪ B. Find a relation among sup A, sup B, and sup C. Let A and B be sets of real numbers and write C = A ∩ B. Find a relation among sup A, sup B, and sup...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT