Question

In: Advanced Math

Let G = Z x Z and H = {(a, b) in Z x Z |...

Let G = Z x Z and H = {(a, b) in Z x Z | 8 divides a+b}

a. Prove directly that H is a normal subgroup in G (use the fact that closed under composition and inverses)

b. Prove that G/H is isomorphic to Z8.

c. What is the index of [G : H]?

Solutions

Expert Solution

Recall some Basic facts:

For any integer

  1. divides that is .
  2. If , then .
  3. If and , then for arbitrary integers and

SOLUTION:   

is an abelian group. such that

Claim: is a Normal subgroup of .

Since is abelian group this implies every subgroup of must be normal subgroup. So to prove is normal it is enough to show that is a subgroup of .

So from the above discussion we conclude that is a subgroup of and since is abelian so is normal in .

Solution of (b) & (c)

NOTE: for an arbitrary we get a preimage.so this is true for all . Hence is onto.

Remark:


Related Solutions

Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove...
Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove that xa+b = xaxb b) prove that (xa)-1 = x-a c) establish part a) for arbitrary integers a and b in Z (positive, negative or zero)
Let G be an abelian group. (a) If H = {x ∈ G| |x| is odd},...
Let G be an abelian group. (a) If H = {x ∈ G| |x| is odd}, prove that H is a subgroup of G. (b) If K = {x ∈ G| |x| = 1 or is even}, must K be a subgroup of G? (Give a proof or counterexample.)
Let G and H be groups. Define the direct product G X H = {(x,y) |...
Let G and H be groups. Define the direct product G X H = {(x,y) | x ∈ G and y ∈H } Prove that G X H itself is a group.
Let g be the function defined by g(x) = x(x + 1). Find g(x + h)...
Let g be the function defined by g(x) = x(x + 1). Find g(x + h) − g(x − h).
5. Let X, Y and Z be sets. Let f : X ! Y and g...
5. Let X, Y and Z be sets. Let f : X ! Y and g : Y ! Z functions. (a) (3 Pts.) Show that if g f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X ! Y and g : Y ! Z such that g f is injective but g is not injective. (c) (3 Pts.) Show that if...
Let X be the set of equivalence classes. So X = {[(a,b)] : a ∈ Z,b...
Let X be the set of equivalence classes. So X = {[(a,b)] : a ∈ Z,b ∈ N} (recall that [(a,b)] = {(c,d) ∈Z×N : (a,b) ∼ (c,d)}). We define an addition and a multiplication on X as follows: [(a,b)] + [(c,d)] = [(ad + bc,bd)] and [(a,b)]·[(c,d)] = [(ac,bd)] Prove that this addition and multiplication is well-defined on X.
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and...
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and ∇h∇h are conservative?
Let G, H, K be groups. Prove that if G ≅ H and H ≅ K...
Let G, H, K be groups. Prove that if G ≅ H and H ≅ K then G ≅ K.
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT