Question

In: Advanced Math

Integral Let f:[a,b]→R and g:[a,b]→R be two bounded functions. Suppose f≤g on [a,b]. Use the information...

Integral

Let f:[a,b]→R and g:[a,b]→R be two bounded functions. Suppose f≤g on [a,b]. Use the information to prove thatL(f)≤L(g)andU(f)≤U(g).

Information:

g : [0, 1] —> R be defined by if x=0, g(x)=1; if x=m/n (m and n are positive integer with no common factor), g(x)=1/n; if x doesn't belong to rational number, g(x)=0

g is discontinuous at every rational number in[0,1].

g is Riemann integrable on [0,1] based on the fact that Suppose h:[a,b]→R is continuous everywhere except at a countable number of points in [a,b]. Then h is Riemann integrable on[a,b].

f : [0,1]→R defined by (f(x) =0 if x = 0) and (f(x)=1 if 0 < x≤1)

f is integrable on [0,1]

Solutions

Expert Solution


Related Solutions

5). Let f : [a,b] to R be bounded and f(x) > a > 0, for...
5). Let f : [a,b] to R be bounded and f(x) > a > 0, for all x in [a,b]. Show that if f is Riemann integrable on [a,b] then 1/f : [a,b] to R, (1/f) (x) = 1/f(x) is also Riemann integrable on [a,b].
Let A and B be two non empty bounded subsets of R: 1) Let A +B...
Let A and B be two non empty bounded subsets of R: 1) Let A +B = { x+y/ x ∈ A and y ∈ B} show that sup(A+B)= sup A + sup B 2) For c ≥ 0, let cA= { cx /x ∈ A} show that sup cA = c sup A hint:( show c supA is a U.B for cA and show if l < csupA then l is not U.B)
a) Suppose f:R → R is differentiable on R. Prove that if f ' is bounded...
a) Suppose f:R → R is differentiable on R. Prove that if f ' is bounded on R then f is uniformly continuous on R. b) Show that g(x) = (sin(x4))/(1 + x2) is uniformly continuous on R. c) Show that the derivative g'(x) is not bounded on R.
Let f: A→B and g:B→C be maps. (A) If f and g are both one-to-one functions,...
Let f: A→B and g:B→C be maps. (A) If f and g are both one-to-one functions, show that g∘f is one-to-one. (B) If g∘f is onto, show that g is onto. (C) If g∘f is one-to-one, show that f is one-to-one. (D) If g∘f is one-to-one and f is onto, show that g is one-to-one. (E) If g∘f is onto and g is one-to-one, show that f is onto. (Abstract Algebra)
If R is the region bounded by the functions f(x)=x+4 and g(x)=−0.5x−1 over the interval [−2,0],...
If R is the region bounded by the functions f(x)=x+4 and g(x)=−0.5x−1 over the interval [−2,0], find the area of the region R as shown in the image.
Let f and g be two functions whose first and second order derivative functions are continuous,...
Let f and g be two functions whose first and second order derivative functions are continuous, all defined on R. What assumptions on f and g guarantee that the composite function f ◦g is concave?
Prove the following: Let f and g be real-valued functions defined on (a, infinity). Suppose that...
Prove the following: Let f and g be real-valued functions defined on (a, infinity). Suppose that lim{x to infinity} f(x) = L and lim{x to infinity} g(x) = M, where L and M are real. Then lim{x to infinity} (fg)(x) = LM. You must use the following definition: L is the limit of f, and we write that lim{x to infinity} f(x) = L provided that for each epsilon > 0 there exists a real number N > a such...
Let A, B be sets and f : A → B and g : B →...
Let A, B be sets and f : A → B and g : B → C . Characterize when g ◦ f : A → C is a bijection.
Prove that if f is a bounded function on a bounded interval [a,b] and f is...
Prove that if f is a bounded function on a bounded interval [a,b] and f is continuous except at finitely many points in [a,b], then f is integrable on [a,b]. Hint: Use interval additivity, and an induction argument on the number of discontinuities.
Let p, q, g : R → R be continuous functions. Let L[y] := y'' +...
Let p, q, g : R → R be continuous functions. Let L[y] := y'' + py' + qy. (i) Explain what it means for a pair of functions y1 and y2 to be a fundamental solution set for the equation L[y] = 0. (ii) State a theorem detailing the general solution of the differential equation L[y] = g(t) in terms of solutions to this, and a related, equation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT