In: Statistics and Probability
Determine the margin of error for a 99% confidence interval to estimate the population mean when s=45 for the sample sizes of n=15, n=34, n=54. (Find the margin of error for each interval when n=x)
Determine the margin of error for a confidence interval to
estimate the population mean with n=24 and s=12.3 for confidence
levels 80%, 90%, 99%.
n = 15
Standard error of mean , SE = s / = 45 / = 11.61895
Degree of freedom = n-1 = 15-1 = 14
Critical value of test statistic t for a 99% confidence interval and df = 14 is 2.98
Margin of error = t * SE = 2.98 * 11.61895 = 34.62447
n = 34
Standard error of mean , SE = s / = 45 / = 7.717436
Degree of freedom = n-1 = 34-1 = 33
Critical value of test statistic t for a 99% confidence interval and df = 33 is 2.73
Margin of error = t * SE = 2.73 * 7.717436 = 21.0686
n = 54
Standard error of mean , SE = s / = 45 / = 6.123724
Degree of freedom = n-1 = 54-1 = 53
Critical value of test statistic t for a 99% confidence interval and df = 53 is 2.67
Margin of error = t * SE = 2.67 * 6.123724 = 16.35034
confidence levels 80%,
Standard error of mean , SE = s / = 12.3 / = 2.510727
Degree of freedom = n-1 = 24-1 = 23
Critical value of test statistic t for a 80% confidence interval and df = 23 is 1.32
Margin of error = t * SE = 1.32 * 2.510727 = 3.31416
confidence levels 90%,
Critical value of test statistic t for a 90% confidence interval and df = 23 is 1.71
Margin of error = t * SE = 1.71 * 2.510727 = 4.293343
confidence levels 99%,
Critical value of test statistic t for a 99% confidence interval and df = 23 is 2.81
Margin of error = t * SE = 2.81 * 2.510727 = 7.055143