In: Statistics and Probability
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to
0.45 and n equals=120.
a. 90%
b. 95%
c. 99%
Solution :
Given that,
a.
Point estimate = sample proportion =
= 0.45
1 -
= 1 - 0.45 = 0.55
Z/2
= 1.645
Margin of error = E = Z
/ 2 *
((
* (1 -
)) / n)
= 1.645 * (((0.45
* 0.55) / 120)
Margin of error = E = 0.075
b.
Point estimate = sample proportion =
= 0.45
1 -
= 1 - 0.45 = 0.55
Z/2
= 1.96
Margin of error = E = Z
/ 2 *
((
* (1 -
)) / n)
= 1.96 * (((0.45
* 0.55) / 120)
Margin of error = E = 0.089
c.
Point estimate = sample proportion =
= 0.45
1 -
= 1 - 0.45 = 0.55
Z/2
= 2.576
Margin of error = E = Z
/ 2 *
((
* (1 -
)) / n)
= 2.576 * (((0.45
* 0.55) / 120)
Margin of error = E = 0.117