In: Statistics and Probability
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to 0.36 and n=125.
a. 90%
b. 95%
c. 98%
a. The margin of error for a confidence interval to estimate the population proportion for the 90% confidence level is _
b. The margin of error for a confidence interval to estimate the population proportion for the 95% confidence level is _
c. The margin of error for a confidence interval to estimate the population proportion for the 98% confidence level is _
Solution :
n = 125
= 0.360
1 - = 1 - 0.360 =0.640
a ) At 90% confidence level the z is ,
= 1 - 90% = 1 - 0.90 = 0.10
/ 2 = 0.10 / 2 = 0.05
Z/2 = Z0.05 = 1.645
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.645 * (((0.360 * 0.640) / 125)
= 0.071
Margin of error = 0.071
b ) At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.960
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.960 * (((0.360 * 0.640) / 125)
= 0.084
Margin of error =0.084
c) At 98% confidence level the z is ,
= 1 - 98% = 1 - 0.98 = 0.02
/ 2 = 0.02 / 2 = 0.01
Z/2 = Z0.01 = 2.330
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 2.330* (((0.360 * 0.640) / 125)
= 0.101
Margin of error =0.101