Question

In: Economics

Consider the market for toothbrushes. Inverse market demand for toothbrushes is described by the function: P...

Consider the market for toothbrushes. Inverse market demand for toothbrushes is described by the function: P = 8 − Q

Inverse market supply of toothbrushes is described by the function: P = Q

Suppose that fresh breath benefits everyone, as a result the market for toothbrushes generates a positive externality, where the external benefit is $2 per toothbrush.

  1. Without government intervention this market will produce (A) 2 fewer (B) 1 more (C) 2 more (D) 1 fewer toothbrushes than is socially optimal.
  2. Suppose the government intervenes in this market by imposing a tax of $2 on buyers of toothbrushes. Now the quantity of toothbrushes bought and sold is (A) Q = 2 units (B) Q = 5 units (C) Q = 4 units (D) Q = 3 units .

Solutions

Expert Solution

P = 8 − Q

P = Q

Marginal private benefit is represented by demand function

MPB= 8 − Q

Marginal social cost = 8 − Q , here we assume marginal social cost equals marginal private cost

Then equilibrium quantity produce =

8 − Q=Q

Q=4

When Q= 4

P= 4

For a socially optimum output, MSC= MSB

for that we should internalise external benefit. It can be done by adding external benefit to marginal private benefit equation

MSB= 8 − Q +2

=10-Q

Socially optimum output = MSB=MSC

10-Q=Q

Q=5

P= 5

Thus without government intervention, or without internalising external benefit, market produce one Less

ANSWER:D

2. When government impose tax on consumer marginal private curve shift downward. Tax on consumer impose additional burden on then.

MPB= 8-Q-2

=6-Q

MSC=Q

now equilibrium is

6-Q=Q

Q=3 units.

Answer D


Related Solutions

A monopolist sells in a market described by the inverse demand function ​p = 10 -...
A monopolist sells in a market described by the inverse demand function ​p = 10 - 0.1Q ​ , where ​p is the price and ​Q ​ is the total quantity sold. The monopolist produce its output in two plants which have the cost functions ​C ​ 1 ​ = 0.25q ​ 1 ​ and ​C ​ 2 ​ = 0.5q ​ 2 ​ , where ​q ​ i ​ (i=1,2) is the output produced in plant i (of course,...
Consider a market where the inverse demand function is P = 100 - Q. All firms...
Consider a market where the inverse demand function is P = 100 - Q. All firms in the market have a constant marginal cost of $10, and no fixed costs. Compare the deadweight loss in a monopoly, a Cournot duopoly with identical firms, and a Bertrand duopoly with homogeneous products.
Consider a market for a homogenous good (Hobbit beer) with the following inverse demand function: p(y)...
Consider a market for a homogenous good (Hobbit beer) with the following inverse demand function: p(y) = 22 − 2y where y is total sold quantity of the beer in litres on the market and p(y) is the price it sells for. There is only one firm serving the market, Samwise beer inc. The firm’s cost function is c(y) = 4y. a) What quantity of beer will be sold on the market? What will be the market price? Suddenly, a...
Consider a market with 4 firms, each facing the same (inverse) demand function given by p...
Consider a market with 4 firms, each facing the same (inverse) demand function given by p = ( 6 − q/50 if q > 200 4.5 − q/200 if 0 ≤ q ≤ 200 If there is a drop in one of the firm’s marginal cost from c = $3 to c = $2, do you think this firm would greatly increase its sales? Explain!
Consider a market where the inverse demand function is p =100 – Q, Q = q1+q2....
Consider a market where the inverse demand function is p =100 – Q, Q = q1+q2. Both firms in the market have a constant marginal cost of $10 and no fixed costs. Suppose these two firms are engaged in Cournot competition. Now answer the following questions: a)      Define best response function. Find the best response function for each firm. b)      Find Cournot-Nash equilibrium quantities and price. c)      Compare Cournot solution with monopoly and perfect competitive solutions.
Consider a market in which firms are price-takers. The inverse demand function is p(Q) = 1...
Consider a market in which firms are price-takers. The inverse demand function is p(Q) = 1 – Q, where p denotes the price of good Q. The production costs are C(Q) = mQ, with 0 < m < 1. The environmental damage caused by output Q is D(Q) = Q 2 . a) Compute the equilibrium price and output. Also, calculate the socially optimal solution. Explain the differences, using a suitable diagram. b) What is the aim of an emission...
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 300, and firm 2's cost function is c(q2) = 6q2 + 600 (such that each firm has MC = 6). Q1: The outputs of the two firms in Cournot-Nash equilibrium will be: 1) q1 = 45 and q2 = 0. 2) q1 = 30 and q2 = 30. 3) q1 = 45...
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 0.5q12, and firm 2's cost function is c(q2) = 6q2 + 0.5q22 (such that each firm has MC = 6 + q). Q1: The Cournot best-response function for firm 1 will be: 1) q1 = 22.5 − q2/4 2) q1 = 30 − q2/3 3) q1 = 45 − q2/2 4) q1...
The inverse demand function for diamonds is P = 1500 − 2Q. The market for diamonds...
The inverse demand function for diamonds is P = 1500 − 2Q. The market for diamonds consists of two firms, Shiny and Dull. Shinys cost function is c(q) = 300q + 5,000 and Dulls cost function is c(q) = 300q + 10,000/4. Which of the following statements is true? ANS is E) but please show the working out (a) Cournot equilibrium total output is 400. Stackelberg eq. total output is 300. (b) Cournot equilibrium total output is 200. Stackelberg eq....
Consider the following industry where the inverse market demand is given by the function: p=180-Y where...
Consider the following industry where the inverse market demand is given by the function: p=180-Y where Y is the total market output. There are two firms in the market, each has a total cost function: ci (yi)=3(yi)2 where i=1,2 is the label of the firm. Suppose the firms act as Cournot duopolists. What output level will each firm produce in order to maximize profits?.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT