Question

In: Economics

Consider a market where the inverse demand function is p =100 – Q, Q = q1+q2....

Consider a market where the inverse demand function is p =100 – Q, Q = q1+q2. Both firms in the market have a constant marginal cost of $10 and no fixed costs. Suppose these two firms are engaged in Cournot competition. Now answer the following questions:

a)      Define best response function. Find the best response function for each firm.

b)      Find Cournot-Nash equilibrium quantities and price.

c)      Compare Cournot solution with monopoly and perfect competitive solutions.

Solutions

Expert Solution


Related Solutions

Consider the following inverse demand function, p(Q) = a-bQ, Q = q1 +q2, where a and...
Consider the following inverse demand function, p(Q) = a-bQ, Q = q1 +q2, where a and b are positive parameters and qi denotes firm i's output, i = 1, 2. Assume that the total cost of firm i is cqi2/2, with c > 0. Firms choose quantities simultaneously and non cooperatively (Cournot competition). The Cournot game described above is infinitely repeated. Firms use grim trigger strategies (infinite Nash reversion). Firms discount future profits at a rate r > 0. a)...
Consider a market where the inverse demand function is P = 100 - Q. All firms...
Consider a market where the inverse demand function is P = 100 - Q. All firms in the market have a constant marginal cost of $10, and no fixed costs. Compare the deadweight loss in a monopoly, a Cournot duopoly with identical firms, and a Bertrand duopoly with homogeneous products.
Suppose that the inverse demand function is described by, P = 60-4(q1 +q2), where q1 is...
Suppose that the inverse demand function is described by, P = 60-4(q1 +q2), where q1 is the output of the incumbent firm and q2 is the output of the entrant. Let the labor cost per unit w = 6 and capital cost per unit be r = 6. In addition, each firm has a fixed setup cost of f. (a) Suppose that in stage one the incumbent invests in capacity K1. Find the incum- bentís and entrantís best response functions...
Consider a market where inverse demand is given by P = 40 − Q, where Q...
Consider a market where inverse demand is given by P = 40 − Q, where Q is the total quantity produced. This market is served by two firms, F1 and F2, who each produce a homogeneous good at constant marginal cost c = $4. You are asked to analyze how market outcomes vary with industry conduct: that is, the way in which firms in the industry compete (or don’t). First assume that F1 and F2 engage in Bertrand competition. 1....
A perfectly competitive market exists for wheat. The inverse demand is P = 100-Q where P...
A perfectly competitive market exists for wheat. The inverse demand is P = 100-Q where P is the price of wheat and Q is the total quantity of wheat. The private total cost for the unregulated market to produce a quantity of Q is 50+80Q +0.5Q^2. The production of wheat creates some pollution where the total externality cost is EC =Q^2. Task 1: Solve for the free market competitive equilibrium of wheat. Task 2: Solve for the socially optimal level...
A perfectly competitive market exists for wheat. The inverse demand is P = 100?Q where P...
A perfectly competitive market exists for wheat. The inverse demand is P = 100?Q where P is the price of wheat and Q is the total quantity of wheat. The private total cost for the unregulated market to produce a quantity of Q is 50+80Q +0.5Q 2 . The production of wheat creates some pollution where the total externality cost is EC = Q 2 . Task 1: Solve for the free market competitive equilibrium of wheat. Task 2: Solve...
The demand function in a duopoly is: P = 100 – 2(Q1 + Q2). If the...
The demand function in a duopoly is: P = 100 – 2(Q1 + Q2). If the first firm decides to sell 10 units while the second firm sells 20 units, which of the following will be true? The second firm will earn twice as much revenue as the first firm. The second firm will sell at a lower price than the first firm. An increase in one firm’s output will not affect the other firm’s revenue. The first firm will...
The inverse demand function in a market is given by p=32-Q where Q is the aggregate quantity produced.
  The inverse demand function in a market is given by p=32-Q where Q is the aggregate quantity produced. The market has 3 identical firms with marginal and average costs of 8. These firms engage in Cournot competition.   a) How much output does each firm produce? b) What is the equilibrium price in the market? c) How much profit does each firm make? d) Consider a merger between two firms. Assuming that due to efficiency gains from the merger,...
Duopoly quantity-setting firms face the market demand: P = 300–Q where Q = Q1 + Q2....
Duopoly quantity-setting firms face the market demand: P = 300–Q where Q = Q1 + Q2. Each firm has a marginal cost of $30 per unit and zero fixed costs. (a) What are the quantities chosen by each firm in the Cournot equilibrium? What is the market price? (b) What are the quantities chosen by each firm in the Stackelberg equilibrium, when Firm 1 moves first? What is the market price? How does this market price compare to the market...
Assume two firms 1 and 2. The inverse market demand function is given by:              P=30-(q1+q2)...
Assume two firms 1 and 2. The inverse market demand function is given by:              P=30-(q1+q2) Each firm produces with marginal costs of MC = 6 Fixed costs are zero. The next questions refer to the Cournot duopoly. Question 1 (1 point) What is Firm 1's total revenue function? Question 1 options: TR1=30q1 -q1 -q22 TR1=30-2q1-q2 TR1=30q1 -q12-q2 None of the above. Question 2 (1 point) What is Firm 1's marginal revenue function? Question 2 options: MR1=30-2q1 -q2 MR1=30-q1-2q2 MR1=30-2q1-2q2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT