In: Statistics and Probability
A politician has commissioned a survey of blue-collar and white-collar workers in her constituency. The survey asks each if they intend to vote for her. The results are presented below:
Vote | Blue Collar White-Collar
For | 448 265
Against | 552 235
a. Is there evidence of a significant difference in the proportions of workers that support her between the two groups of workers? Test using a .05 level of significance.
b. Find beta for the test if the true proportion voting for her among blue collar workers was 15 % less than for white collar workers.
a)
Ho:   p1 - p2 =   0  
       
Ha:   p1 - p2 ╪   0  
       
          
       
sample #1   ----->      
       
first sample size,     n1=  
1000          
number of successes, sample 1 =     x1=  
448          
proportion success of sample 1 , p̂1=  
x1/n1=   0.4480      
   
          
       
sample #2   ----->      
       
second sample size,     n2 =   
500          
number of successes, sample 2 =     x2 =
   265      
   
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.5300      
   
          
       
difference in sample proportions, p̂1 - p̂2 =    
0.4480   -   0.5300   =  
-0.0820
          
       
pooled proportion , p =   (x1+x2)/(n1+n2)=  
0.4753          
          
       
std error ,SE =    =SQRT(p*(1-p)*(1/n1+
1/n2)=   0.02735      
   
Z-statistic = (p̂1 - p̂2)/SE = (   -0.082  
/   0.0274   ) =   -2.9979
          
       
p-value =       
0.0027   [excel formula =2*NORMSDIST(z)]  
   
decision :    p-value<α,Reject null hypothesis
          
   
          
       
Conclusion:   There is enough evidence of a
significant difference in the proportions of workers that support
her between the two groups of workers
b)
We will fail to reject the null (commit a Type II error) if we
get a Z statistic between      
           
    -1.960   and   1.960
these Z-critical value corresponds to some X critical values ( X
critical), such that      
           
           
-1.960   ≤(p^ - po)/σpo≤  
1.960  
-1.960   *σpo + po≤ p^ ≤   1.960  
*σpo + po
-1.96*0.02735 + 0 ≤ p^ ≤ 1.96*0.02735 + 0
-0.0536≤ p^ ≤ 0.0536
std error ,SE =SQRT(p̂1*(1-p̂1)/n1 +
p̂2*(1-p̂2)/n2)=   0.02730
now, type II error is ,ß =       
P(-0.0536< p^ < 0.0536)       =P(
(0.1216-p) /σp < Z < (0.2784-p)/σp )  
           
       =P( (-0.0536-0.15)/0.0273 <
(X-µ)/σ < (0.0536-0.15)/0.0273 )      
           
           
       
          
           
           
   
P (    -7.458   < Z <   
-3.531   )       
           
   
= P ( Z <    -3.531   ) - P ( Z
<   -7.46   ) =   
0.0002   -    0.0000   =
   0.0002   (answer)