Question

In: Advanced Math

solve using laPlace dy/dt+4y=40sin3t; y(0)=6 Please show all steps and write neat, thanks!

solve using laPlace dy/dt+4y=40sin3t; y(0)=6 Please show all steps and write neat, thanks!

Solutions

Expert Solution

g


Related Solutions

Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
solve y'' + 4y =6 sin (t);y(0) =6, y'(0)=0 using 1st laplace transforms, 2nd undertinend coefficent,...
solve y'' + 4y =6 sin (t);y(0) =6, y'(0)=0 using 1st laplace transforms, 2nd undertinend coefficent, and 3rd variation of parameters.
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = -...
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = - 1 , i am stuck on the partial fraction decomposition step. please explain the decomposition clearly.
solve using variation of parameters. y'' + 4y = 6 sint; y(0)=6, y'(0) = 0
solve using variation of parameters. y'' + 4y = 6 sint; y(0)=6, y'(0) = 0
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use...
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use the convolution theorem to write your answer. You may leave your answer expressed in terms of an integral.
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0)...
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0) = −7 2. (1− t) y''+ t y' − y = 0, y(0) = 3, y'(0) = −1
Solve the initial value problem below using the method of Laplace transforms. y"-4y'+13y=10e^3t y(0)=1, y'(0)=6
Solve the initial value problem below using the method of Laplace transforms. y"-4y'+13y=10e^3t y(0)=1, y'(0)=6
Solve the initial value problem below using the method of Laplace transforms. ty''-4ty'+4y=20, y(0)=5 y'(0)=-6
Solve the initial value problem below using the method of Laplace transforms. ty''-4ty'+4y=20, y(0)=5 y'(0)=-6
Use the Laplace transform to solve y'' + 4y' + 5y = 1, y(0)= 1, y'(0)...
Use the Laplace transform to solve y'' + 4y' + 5y = 1, y(0)= 1, y'(0) = 2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT