Question

In: Advanced Math

Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0)...

Solve with Laplace transform

1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0) = −7

2. (1− t) y''+ t y' − y = 0, y(0) = 3, y'(0) = −1

Solutions

Expert Solution


Related Solutions

using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = -...
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = - 1 , i am stuck on the partial fraction decomposition step. please explain the decomposition clearly.
Use the Laplace transform to solve y'' + 4y' + 5y = 1, y(0)= 1, y'(0)...
Use the Laplace transform to solve y'' + 4y' + 5y = 1, y(0)= 1, y'(0) = 2
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use...
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use the convolution theorem to write your answer. You may leave your answer expressed in terms of an integral.
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t...
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t y(0)=0,y′(0)=0 Y(s)= ?    Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t). Use step(t-c) for the Heaviside function u(t−c) . y(t)= ?
Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Solve the differential equation by Laplace transform y^(,,) (t)-2y^' (t)-3y(t)=sint   where y^' (0)=0 ,y=(0)=0
Use the Laplace transform to solve the given initial value problem. y(4) − 4y''' + 6y''...
Use the Laplace transform to solve the given initial value problem. y(4) − 4y''' + 6y'' − 4y' + y = 0; y(0) = 1, y'(0) = 0, y''(0) = 0, y'''(0) = 1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT