Question

In: Advanced Math

solve y'' + 4y =6 sin (t);y(0) =6, y'(0)=0 using 1st laplace transforms, 2nd undertinend coefficent,...

solve y'' + 4y =6 sin (t);y(0) =6, y'(0)=0 using 1st laplace transforms, 2nd undertinend coefficent, and 3rd variation of parameters.

Solutions

Expert Solution

on simplification gives 2sin(t)


Related Solutions

Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
y''+ 3y'+2y=e^t y(0)=1 y'(0)=-6 Solve using Laplace transforms. Then, solve using undetermined coefficients. Then, solve using...
y''+ 3y'+2y=e^t y(0)=1 y'(0)=-6 Solve using Laplace transforms. Then, solve using undetermined coefficients. Then, solve using variation of parameters.
Solve the initial value problem below using the method of Laplace transforms. ty''-4ty'+4y=20, y(0)=5 y'(0)=-6
Solve the initial value problem below using the method of Laplace transforms. ty''-4ty'+4y=20, y(0)=5 y'(0)=-6
Solve the initial value problem below using the method of Laplace transforms. y"-4y'+13y=10e^3t y(0)=1, y'(0)=6
Solve the initial value problem below using the method of Laplace transforms. y"-4y'+13y=10e^3t y(0)=1, y'(0)=6
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = -...
using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = - 1 , i am stuck on the partial fraction decomposition step. please explain the decomposition clearly.
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t...
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t y(0)=0,y′(0)=0 Y(s)= ?    Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t). Use step(t-c) for the Heaviside function u(t−c) . y(t)= ?
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use...
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use the convolution theorem to write your answer. You may leave your answer expressed in terms of an integral.
Use Laplace transforms to solve the initial value problem: y''' −y' + t = 0, y(0)...
Use Laplace transforms to solve the initial value problem: y''' −y' + t = 0, y(0) = 0, y'(0) = 0, y''(0) = 0.
Solve the initial value problem below using the method of Laplace transforms. y'' - 4y' +...
Solve the initial value problem below using the method of Laplace transforms. y'' - 4y' + 8y = 5e^t y(0) = 1 y'(0) = 3
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0)...
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0) = −7 2. (1− t) y''+ t y' − y = 0, y(0) = 3, y'(0) = −1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT