Question

In: Advanced Math

using the Laplace transform solve the IVP y'' +4y= 3sin(t) y(0) =1 , y'(0) = -...

using the Laplace transform solve the IVP

y'' +4y= 3sin(t) y(0) =1 , y'(0) = - 1 , i am stuck on the partial fraction decomposition step. please explain the decomposition clearly.

Solutions

Expert Solution


Related Solutions

Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0)...
Solve with Laplace transform 1. y''+ 4 t y'− 4y = 0, y(0) = 0, y'(0) = −7 2. (1− t) y''+ t y' − y = 0, y(0) = 3, y'(0) = −1
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use...
Solve using the Laplace transform: y" + 4y = g(t) where y(0) = y'(0). Hint: Use the convolution theorem to write your answer. You may leave your answer expressed in terms of an integral.
Use the Laplace transform to solve y'' + 4y' + 5y = 1, y(0)= 1, y'(0)...
Use the Laplace transform to solve y'' + 4y' + 5y = 1, y(0)= 1, y'(0) = 2
Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
Solve using Laplace and Inverse Laplace Transforms. Y’’’-y’’-4y’+4y=0 y(0)=1 y’(0)=9 y’’(0)=1
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
Use the Laplace transform to solve the IVP: y^'''+y^''+3y^'-5y =16e^(-t); y(0)=0; y'(0)=2; y^'' (0)= -4
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
use laplace transform to solve the initial value problem: y''+4y=3sint y(0)=1, y'(0)=-1
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t...
Take the Laplace transform of the following initial value and solve for Y(s)=L{y(t)}: y′′+4y={sin(πt) ,0, 0≤t<11≤t y(0)=0,y′(0)=0 Y(s)= ?    Hint: write the right hand side in terms of the Heaviside function. Now find the inverse transform to find y(t). Use step(t-c) for the Heaviside function u(t−c) . y(t)= ?
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Solve the laplace transform to solve the initial value problem. y"-6y'+9y=t. Y(0)=0, y'(0)=1
Again considering y'' + 4y' + 3y = 0: (a) Solve the IVP y'' + 4y'...
Again considering y'' + 4y' + 3y = 0: (a) Solve the IVP y'' + 4y' + 3y = 0; y(0) = 1, y'(0) = α where α > 0. (b) Determine the coordinates (tm,ym) of the maximum point of the solution as a function of α. (c) Determine the behavior of tm and ym as α →∞.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT