Question

In: Statistics and Probability

A manufacturer claims that the mean lifetime, u, of its light bulbs is 50 months. The...

A manufacturer claims that the mean lifetime, u, of its light bulbs is 50 months. The standard deviation of these lifetimes is 8 months. Fifty bulbs are selected at random, and their mean lifetime is found to be 49 months. Can we conclude, at the 0.1 level of significance, that the mean lifetime of light bulbs made by this manufacturer differs from 50 months?

Solutions

Expert Solution

Solution:

Given in the question

Claim is that the mean lifetime of light bulbs made by this manufacturers differs from 50 months so null hypothesis and alternative hypothesis can be written as follows:

Null hypothesis H0: = 50 months

Alternate hypothesis Ha: 50 months

Population standard deviation = 8 months

No. Of sample = 50

Sample mean = 49 months

Here we will use Z test because sample size is large enough and population standard deviation is known.

So test statitsic can be calculated as

Test statistic = (Sample mean - )//sqrt(n) = (49-50)/8/sqrt(50) = -1/1.13 = -0.88

So P-value can be found from Z table

As this is two tailed test so P-value = 0.3789

At alpha= 0.1, we are failed to reject the null hypothesis because p-value is greater than alpha value so we have don't have significant evidence to support the alternative claim that is mean life of bulb differs from 50 months.


Related Solutions

A manufacturer claims that the mean lifetime,U , of its light bulbs is 54 months. The...
A manufacturer claims that the mean lifetime,U , of its light bulbs is 54 months. The standard deviation of these lifetimes is 8 months. One hundred fifty bulbs are selected at random, and their mean lifetime is found to be 53 months. Can we conclude, at the 0.05 level of significance, that the mean lifetime of light bulbs made by this manufacturer differs from 54 months? Perform a two-tailed test. Then fill in the table below. Carry your intermediate computations...
A manufacturer of light bulbs claims that the average lifetime of one of their bulbs is...
A manufacturer of light bulbs claims that the average lifetime of one of their bulbs is more than 900 hours. A consumer advocacy group wants to test this claim. They obtained a simple random sample of 61 bulbs and timed how long they took to burn out. They obtained a sample mean of 907.5 hours with a standard deviation of 16.5 hours. It’s your job to test the claim at the 5% significance level and determine if the manufacturer is...
A manufacturer of light bulbs claims that its light bulbs have a mean life of 1520...
A manufacturer of light bulbs claims that its light bulbs have a mean life of 1520 hours. If a random sample of 40 bulbs is tested and has an average life of 1500 hours and the standard deviation is 80 hours, is there sufficient evidence to claim that the mean life is different than the manufacturer's claim? Use alpha = 0.01. Calculate the test statistic. Calculate a confidence interval for the true mean light bulb life. Use the level of...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1300 hours. A homeowner...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1300 hours. A homeowner selects 25 bulbs and finds the mean lifetime to be 1270 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use α = 0.05.
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1000 hours. The lifetimes...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1000 hours. The lifetimes are normally distributed with a standard deviation of σ = 80 hours. A homeowner decides to test the manufacturer's claim; in a random sample of 40 bulbs, the mean lifetime is 980 hours. At a significance level of α = 0.05, does this data provide evidence to reject the manufacturer's claim? Show all 7 steps for p-value method.
BIG Corporation advertises that its light bulbs have a mean lifetime, u , of 3000 hours....
BIG Corporation advertises that its light bulbs have a mean lifetime, u , of 3000 hours. Suppose that we have reason to doubt this claim and decide to do a statistical test of the claim. We choose a random sample of light bulbs manufactured by BIG and find that the mean lifetime for this sample is 2860 hours and that the sample standard deviation of the lifetimes is hours. Based on this information, answer the questions below. What are the...
GE, a company that makes light bulbs claims that its bulbs have a mean life of...
GE, a company that makes light bulbs claims that its bulbs have a mean life of 800 hours with a standard deviation of 32 hours. Show all work a)If you buy a four-pack of bulbs, what is the probability that the mean life will be 775 to 850 hours for that four-pack ? b)If you buy a case of 40 bulbs, what is the probability that the mean lifewill be 775 to 850 hours for the entire case? answers accurate...
A company that manufactures light bulbs claims that its light bulbs last an average of 1500...
A company that manufactures light bulbs claims that its light bulbs last an average of 1500 hours. A consumer research group wants to test the hypothesis that the mean life of light bulbs manufactured by this company is less than 1500 hours. A sample of 35 light bulbs manufactured by this company gave a mean life of 1450 hours with a standard deviation of 100 hours. The significance level of the hypothesis test is 5% and the distribution for the...
A manufacturer claims that the mean lifetime of its lithium batteries is 1400 hours. A homeowner...
A manufacturer claims that the mean lifetime of its lithium batteries is 1400 hours. A homeowner selects 30 of these batteries and finds the mean lifetime to be 1380 hours with a standard deviation of 80 hours. Test the manufacturer's claim using a two-tailed test. Use α = 0.05. Round to 3 decimal places. 1.) State the Null and Alternative Hypotheses (mathematically, not in words). 2.) Specify the critical t values for the rejection region (that is, find the critical...
A manufacturer claims that the mean lifetime of its lithium batteries is 1500 hours. A home...
A manufacturer claims that the mean lifetime of its lithium batteries is 1500 hours. A home owner selects 30 of these batteries and finds the mean lifetime to be 1470 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use a=0.05 . Round the test statistic to the nearest thousandth. a) Hypothesis : b) Critical value (tcritical) : c) Test statistic (tstat) and the decision about the test statistic: (reject or fail to reject Ho) : d)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT