Question

In: Statistics and Probability

A manufacturer claims that the mean lifetime of its lithium batteries is 1400 hours. A homeowner...

A manufacturer claims that the mean lifetime of its lithium batteries is 1400 hours. A homeowner selects 30 of these batteries and finds the mean lifetime to be 1380 hours with a standard deviation of 80 hours. Test the manufacturer's claim using a two-tailed test. Use α = 0.05. Round to 3 decimal places.

1.) State the Null and Alternative Hypotheses (mathematically, not in words).

2.) Specify the critical t values for the rejection region (that is, find the critical region) using the table below or your calculator, draw the t- distribution, and shade the critical/rejection region(s). 3.) Find the test statistic by hand using the formula. -over-

4.) Does the test statistic fall in the rejection region? YES or NO

5.) State the conclusion to your hypothesis test. Circle: Reject the null hypothesis or Do not reject the null hypothesis.

6.) So, is there enough evidence to reject the manufacturer claim that the mean lifetime of its lithium batteries is 1400 hours (Null Hypothesis)? YES or NO

7.) Find the p-value using your calculator (list the function and inputs for partial credit). Determine your conclusion (again-it should be the same as above in e and f) and state why (ie., because the p-value is less than.... or not less than...). p-value: Conclusion: Why:

Solutions

Expert Solution

Given = 1400 hours

Sample statistics

mean = 1380 hours

std dev s = 80 hours

sample size n = 30

1.) Hypothesis

H0:

H1: two tail test

2.) alpha = 0.05

degrees of freedom df = n-1 = 30-1 =29

critcal value = talpha/2,df = t0.025,29 = +/- 2.045

blue region is rejection region.

rejection criteria : It |test statistic | > critical value then reject H0 otherwise fail to reject.

3) test statistic t = = = -1.369

4) No, The test statistic does not fall in rejection region

5) Do not reject the null hypothesis.

6) No, there is no enough evidence to reject the manufacturer claim that the mean lifetime of its lithium batteries is 1400 hours (Null Hypothesis)

7) p-value = 0.1815 , No, there is no enough evidence to reject the manufacturer claim that the mean lifetime of its lithium batteries is 1400 hours (Null Hypothesis) ie., because the p-value is not less than alpha (0.05).


Related Solutions

A manufacturer claims that the mean lifetime of its lithium batteries is 1500 hours. A home...
A manufacturer claims that the mean lifetime of its lithium batteries is 1500 hours. A home owner selects 30 of these batteries and finds the mean lifetime to be 1470 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use a=0.05 . Round the test statistic to the nearest thousandth. a) Hypothesis : b) Critical value (tcritical) : c) Test statistic (tstat) and the decision about the test statistic: (reject or fail to reject Ho) : d)...
1. A manufacturer claims that the mean lifetime of its lithium batteries is 1200 hours. A...
1. A manufacturer claims that the mean lifetime of its lithium batteries is 1200 hours. A homeowner selects 26 of these batteries and finds the mean lifetime to be 1100 hours with a standard deviation of 85 hours. Test the manufacturer's claim. Use α = 0.05. Round the test statistic to the nearest thousandth. Please solve using excel
A manufacturer claims that the mean lifetime of its lithium batteries is 1100 hours buta group...
A manufacturer claims that the mean lifetime of its lithium batteries is 1100 hours buta group of homeowners believe their battery-life is different than this manufactureds claim. A homeowner selects 35 of these batteries and finds the mean lifetime to be 1080 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use u = 0.10 and the p-value approach. Round the test statistic to the nearest thousandth. Every solution should have the following 8 steps clearly written...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1300 hours. A homeowner...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1300 hours. A homeowner selects 25 bulbs and finds the mean lifetime to be 1270 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use α = 0.05.
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1000 hours. The lifetimes...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1000 hours. The lifetimes are normally distributed with a standard deviation of σ = 80 hours. A homeowner decides to test the manufacturer's claim; in a random sample of 40 bulbs, the mean lifetime is 980 hours. At a significance level of α = 0.05, does this data provide evidence to reject the manufacturer's claim? Show all 7 steps for p-value method.
A company manufacturing batteries says that its batteries will last 1400 hours. Suppose that the life...
A company manufacturing batteries says that its batteries will last 1400 hours. Suppose that the life times of the batteries are approximately normally distributed, with a mean of 1450 hours and a standard deviation of 60 hours. a) What proportion of the batteries will last less than 1400 hours? b) What is the probability that a randomly selected batteries will last at least 1550 hours? c) How many hours would represent the cutoff for the top 10% of all batteries?...
The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours.
The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours. a. What is the probability that a randomly chosen light bulb will last for more than 1800 hours? b. What percentage of bulbs last between 1350 and 1550 hours? c. What percentage of bulbs last less than 1.5 standard deviations below the mean lifetime or longer than 1.5 standard deviations above the mean? d. Find a value k such that 20% of the bulbs last...
A cell phone manufacturer claims that the batteries in its latest model provide 20 hours of...
A cell phone manufacturer claims that the batteries in its latest model provide 20 hours of continuous use. In order to verify this claim, and independent testing firm checks the battery life of 100 phones. They find that the batteries in these 100 phones last an average of 19 hours with a standard deviation of 5 hours. Conduct an appropriate hypothesis test to check whether the results from this sample provide sufficient evidence that the true mean battery life is...
2. The lifetime of light bulb is normally distributed with mean of 1400 hours and standard...
2. The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours. a. What is the probability that a randomly chosen light bulb will last for more than 1800 hours? b. What percentage of bulbs last between 1350 and 1550 hours? c. What percentage of bulbs last less than 1.5 standard deviations below the mean lifetime or longer than 1.5 standard deviations above the mean? d. Find a value k such that...
A car manufacturer, Swanson, claims that the mean lifetime of one of its car engines is...
A car manufacturer, Swanson, claims that the mean lifetime of one of its car engines is greater than 220000 miles, which is the mean lifetime of the engine of a competitor. The mean lifetime for a random sample of 23 of the Swanson engines was with mean of 226450 miles with a standard deviation of 11500 miles. Test the Swanson's claim using a significance level of 0.01. What is your conclusion?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT