Question

In: Statistics and Probability

A manufacturer of light bulbs claims that the average lifetime of one of their bulbs is...

A manufacturer of light bulbs claims that the average lifetime of one of their bulbs is more than 900 hours. A consumer advocacy group wants to test this claim. They obtained a simple random sample of 61 bulbs and timed how long they took to burn out. They obtained a sample mean of 907.5 hours with a standard deviation of 16.5 hours. It’s your job to test the claim at the 5% significance level and determine if the manufacturer is overstating the life of their bulbs or not.

Solutions

Expert Solution

Solution:

Given:

Claim: the average lifetime of one of their bulbs is more than 900 hours.

that is:

Sample size = n = 61

Sample mean =

Sample standard deviation = s = 16.5 hours

Significance level = 5% = 0.05

Step 1) State H0 and H1:

Vs  

This is right tailed ( one tailed) test.

Step 2) Test statistic:

Step 3) t critical value:

df = n -1 = 61 - 1 = 60

Significance level = 5% = 0.05

Look in t table for df = 61 and one tail area = 0.05 and find t critical value

t critical value = 1.671

Step 4) Decision Rule:

Reject null hypothesis H0, if t test statistic value > t critical value =1.671, otherwise we fail to reject H0

Since t test statistic value = > t critical value =1.671, we reject null hypothesis H0.

Step 5) Conclusion:

At 0.05 level of significance, we have sufficient evidence to support the manufacturer claim that the average lifetime of one of their bulbs is more than 900 hours.

Thus the manufacturer is not overstating the life of their bulbs.


Related Solutions

A manufacturer claims that the mean lifetime,U , of its light bulbs is 54 months. The...
A manufacturer claims that the mean lifetime,U , of its light bulbs is 54 months. The standard deviation of these lifetimes is 8 months. One hundred fifty bulbs are selected at random, and their mean lifetime is found to be 53 months. Can we conclude, at the 0.05 level of significance, that the mean lifetime of light bulbs made by this manufacturer differs from 54 months? Perform a two-tailed test. Then fill in the table below. Carry your intermediate computations...
A manufacturer claims that the mean lifetime, u, of its light bulbs is 50 months. The...
A manufacturer claims that the mean lifetime, u, of its light bulbs is 50 months. The standard deviation of these lifetimes is 8 months. Fifty bulbs are selected at random, and their mean lifetime is found to be 49 months. Can we conclude, at the 0.1 level of significance, that the mean lifetime of light bulbs made by this manufacturer differs from 50 months?
A manufacturer of light bulbs claims that its light bulbs have a mean life of 1520...
A manufacturer of light bulbs claims that its light bulbs have a mean life of 1520 hours. If a random sample of 40 bulbs is tested and has an average life of 1500 hours and the standard deviation is 80 hours, is there sufficient evidence to claim that the mean life is different than the manufacturer's claim? Use alpha = 0.01. Calculate the test statistic. Calculate a confidence interval for the true mean light bulb life. Use the level of...
A company that manufactures light bulbs claims that its light bulbs last an average of 1500...
A company that manufactures light bulbs claims that its light bulbs last an average of 1500 hours. A consumer research group wants to test the hypothesis that the mean life of light bulbs manufactured by this company is less than 1500 hours. A sample of 35 light bulbs manufactured by this company gave a mean life of 1450 hours with a standard deviation of 100 hours. The significance level of the hypothesis test is 5% and the distribution for the...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1300 hours. A homeowner...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1300 hours. A homeowner selects 25 bulbs and finds the mean lifetime to be 1270 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use α = 0.05.
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1000 hours. The lifetimes...
A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1000 hours. The lifetimes are normally distributed with a standard deviation of σ = 80 hours. A homeowner decides to test the manufacturer's claim; in a random sample of 40 bulbs, the mean lifetime is 980 hours. At a significance level of α = 0.05, does this data provide evidence to reject the manufacturer's claim? Show all 7 steps for p-value method.
A light-bulb manufacturer advertises that the average life for its light bulbs is 900 hours. A...
A light-bulb manufacturer advertises that the average life for its light bulbs is 900 hours. A random sample of 15 of its light bulbs resulted in the following lives in hours.                          995 590 510 539 739 917 571 555                          916   728   664   693   708   887   849 At the 10% significance level, test the claim that the sample is from a population with a mean life of 900 hours. Use the P-value method of testing hypotheses. Identify the null and alternative hypotheses,...
A manufacturer of light bulbs finds that one light bulb model has a mean life span...
A manufacturer of light bulbs finds that one light bulb model has a mean life span of 1025 h with a standard deviation of 80 h. What percent of these light bulbs will last as follows? (Round your answers to one decimal place.) (a) at least 970 h % (b) between 810 and 880 h %
The life of light bulbs is distributed normally. The standard deviation of the lifetime is 20...
The life of light bulbs is distributed normally. The standard deviation of the lifetime is 20 hours and the mean lifetime of a bulb is 590 hours. Find the probability of a bulb lasting for at most 626 hours. Round your answer to four decimal places.
A car manufacturer, Swanson, claims that the mean lifetime of one of its car engines is...
A car manufacturer, Swanson, claims that the mean lifetime of one of its car engines is greater than 220000 miles, which is the mean lifetime of the engine of a competitor. The mean lifetime for a random sample of 23 of the Swanson engines was with mean of 226450 miles with a standard deviation of 11500 miles. Test the Swanson's claim using a significance level of 0.01. What is your conclusion?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT