Question

In: Chemistry

For the reaction shown here, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) Part A If a...

For the reaction shown here, Kc = 0.513 at 500 K.
N2O4(g)⇌2NO2(g)

Part A

If a reaction vessel initially contains an N2O4 concentration of 5.50×10−2 M at 500 K, what are the equilibrium concentrations of N2O4 and NO2 at 500 K?

[N2O4], [NO2] =

Solutions

Expert Solution

ICE Table:

[N2O4] [NO2]

initial 0.055

change -1x +2x

equilibrium 0.055-1x +2x

Equilibrium constant expression is

kc = [NO2]^2/[N2O4]

0.513 = (4*x^2)/((5.5*10^-2-1*x))

2.822*10^-2-0.513*x = 4*x^2

2.822*10^-2-0.513*x-4*x^2 = 0

This is quadratic equation (ax^2+bx+c=0)

a = -4

b = -0.513

c = 2.822*10^-2

Roots can be found by

x = {-b + sqrt(b^2-4*a*c)}/2a

x = {-b - sqrt(b^2-4*a*c)}/2a

b^2-4*a*c = 0.7146

roots are :

x = -0.1698 and x = 4.154*10^-2

since x can't be negative, the possible value of x is

x = 4.154*10^-2

At equilibrium:

[N2O4] = 0.055-1x = 0.055-1*0.04154 = 0.01346 M

[NO2] = +2x = +2*0.04154 = 0.08309 M

1.35*10^-2 M, 8.31*10^-2 M


Related Solutions

For the following reaction, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) If a reaction vessel initially...
For the following reaction, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) If a reaction vessel initially contains an N2O4 concentration of 5.50×10−2 M at 500 K, what are the equilibrium concentrations of N2O4 and NO2 at 500 K? [N2O4], [NO2] = ____ M
The value of Kc for the reaction: N2O4(g) ↔ 2NO2 (g) is 0.21 at 373K. If...
The value of Kc for the reaction: N2O4(g) ↔ 2NO2 (g) is 0.21 at 373K. If a reaction vessel at that temperature initially contains 0.030M NO2 and 0.030M N2O4, what are the concentrations of the two gases at equilibrium? First, the reaction quotient (Q) [page 645 of textbook] must be calculated, and then use the I.C.E table [page 648-650 of the textbook] to determine the equilibrium concentrations.
At 100∘C, Kc = 4.72 for the reaction 2NO2(g)⇌N2O4(g). An empty 10.0 L flask is filled...
At 100∘C, Kc = 4.72 for the reaction 2NO2(g)⇌N2O4(g). An empty 10.0 L flask is filled with 2.30 g of NO2at 100∘C. 1) What is the total pressure in the flask at equilibrium?
The half-life for the first-order decomposition of N2O4 is 1.3×10?5s. N2O4(g)?2NO2(g) Part A If N2O4 is...
The half-life for the first-order decomposition of N2O4 is 1.3×10?5s. N2O4(g)?2NO2(g) Part A If N2O4 is introduced into an evacuated flask at a pressure of 19.0 mmHg, how many seconds are required for the pressure of NO2 to reach 1.4 mmHg?
At –80°C, K for the reaction N2O4(g) 2NO2(g) is 4.66 × 10–8. We introduce 0.049 mole...
At –80°C, K for the reaction N2O4(g) 2NO2(g) is 4.66 × 10–8. We introduce 0.049 mole of N2O4 into a 1.0-L vessel at –80°C and let equilibrium be established. The total pressure in the system at equilibrium will be: (0.78 atm)
The degree of dissociation, α, for the following reaction: N2O4(g) <--> 2NO2(g) is 0.655 at 298...
The degree of dissociation, α, for the following reaction: N2O4(g) <--> 2NO2(g) is 0.655 at 298 K and 1.00 bar total pressure. Find K.
N2O4 (g) ⇌ 2NO2(g). KP = 0.10 at some Temperature. If 0.40 atm of N2O4 is...
N2O4 (g) ⇌ 2NO2(g). KP = 0.10 at some Temperature. If 0.40 atm of N2O4 is placed in an evacuated flask, what are the pressures at equilibrium?
1) The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) <---...
1) The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) <--- --->PCl3(g) + Cl2(g) Calculate the equilibrium concentrations of reactant and products when 0.279 moles of PCl5(g) are introduced into a 1.00 L vessel at 500 K. [PCl5] = M [PCl3] = M [Cl2] = M 2) The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K. H2 (g) + I2 (g) <---- ----> 2 HI (g) Calculate the equilibrium concentrations of...
1) The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) <---...
1) The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) <--- --->PCl3(g) + Cl2(g) Calculate the equilibrium concentrations of reactant and products when 0.279 moles of PCl5(g) are introduced into a 1.00 L vessel at 500 K. [PCl5] = M [PCl3] = M [Cl2] = M 2) The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K. H2 (g) + I2 (g) <---- ----> 2 HI (g) Calculate the equilibrium concentrations of...
Consider the reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.135 M CO...
Consider the reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kc=102 at 500 K A reaction mixture initially contains 0.135 M CO and 0.135 M H2O. What is the equilibrium concentration of [CO], [H2O], [CO2], and [H2]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT