Question

In: Chemistry

At a certain temperature, K for the reaction below is 7.5 L/mol. 2NO2(g) → N2O4(g) If...

At a certain temperature, K for the reaction below is 7.5 L/mol.

2NO2(g) → N2O4(g)

If 2.0 moles of NO2 are placed in a 2.0 liter container and permitted to react at this temperature, what will be the concentration of N2O4 at equilibrium?

Solutions

Expert Solution

Answer –

Given, K = 7.5 L/mol, moles of NO2 = 2.0 moles, volume = 2.0 L

We need to calculate the concentration of N2O4 at equilibrium

Step 1) Calculate the molarity of NO2

We know,

Molarity = moles / L

               = 2.0 mole / 2.0 L = 1 M

Step2) We need to put ICE chart

   2NO2(g) -----> N2O4(g)

I 1 M                    0

C -2x                   +x

E 1-2x                  +x

So, K = [N2O4(g)] / [NO2(g)]2

7.5 L/mol = x / (1-2x)2

7.5 *(1-2x)2 = x

7.5 (4x2-4x+1 ) = x

30x2-30x+7.5 =x

So, 30x2-30x-x+7.5=0

30x2-31x+7.5 = 0

Now using the quadratic equation

a= 30 , b = -31 , c = 7.5

x = -b +/-√b2-4ac /2a

by plugging the value in this one

x =0.386 and x = 647

we consider the lowest value so,

x = 0.386

we know at equilibrium

x = [N2O4(g)] = 0.386 M


Related Solutions

For the following reaction, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) If a reaction vessel initially...
For the following reaction, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) If a reaction vessel initially contains an N2O4 concentration of 5.50×10−2 M at 500 K, what are the equilibrium concentrations of N2O4 and NO2 at 500 K? [N2O4], [NO2] = ____ M
For the reaction shown here, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) Part A If a...
For the reaction shown here, Kc = 0.513 at 500 K. N2O4(g)⇌2NO2(g) Part A If a reaction vessel initially contains an N2O4 concentration of 5.50×10−2 M at 500 K, what are the equilibrium concentrations of N2O4 and NO2 at 500 K? [N2O4], [NO2] =
N2O4 (g) ⇌ 2NO2(g). KP = 0.10 at some Temperature. If 0.40 atm of N2O4 is...
N2O4 (g) ⇌ 2NO2(g). KP = 0.10 at some Temperature. If 0.40 atm of N2O4 is placed in an evacuated flask, what are the pressures at equilibrium?
At 100∘C, Kc = 4.72 for the reaction 2NO2(g)⇌N2O4(g). An empty 10.0 L flask is filled...
At 100∘C, Kc = 4.72 for the reaction 2NO2(g)⇌N2O4(g). An empty 10.0 L flask is filled with 2.30 g of NO2at 100∘C. 1) What is the total pressure in the flask at equilibrium?
At –80°C, K for the reaction N2O4(g) 2NO2(g) is 4.66 × 10–8. We introduce 0.049 mole...
At –80°C, K for the reaction N2O4(g) 2NO2(g) is 4.66 × 10–8. We introduce 0.049 mole of N2O4 into a 1.0-L vessel at –80°C and let equilibrium be established. The total pressure in the system at equilibrium will be: (0.78 atm)
The value of Kc for the reaction: N2O4(g) ↔ 2NO2 (g) is 0.21 at 373K. If...
The value of Kc for the reaction: N2O4(g) ↔ 2NO2 (g) is 0.21 at 373K. If a reaction vessel at that temperature initially contains 0.030M NO2 and 0.030M N2O4, what are the concentrations of the two gases at equilibrium? First, the reaction quotient (Q) [page 645 of textbook] must be calculated, and then use the I.C.E table [page 648-650 of the textbook] to determine the equilibrium concentrations.
The degree of dissociation, α, for the following reaction: N2O4(g) <--> 2NO2(g) is 0.655 at 298...
The degree of dissociation, α, for the following reaction: N2O4(g) <--> 2NO2(g) is 0.655 at 298 K and 1.00 bar total pressure. Find K.
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium...
Consider the reaction: 2 NO2(g) → N2O4(g) Calculate ΔG (in kJ/mol) at 298°K if the equilibrium partial pressures of NO2 and N2O4 are 1.337 atm and 0.657 atm, respectively.
The half-life for the first-order decomposition of N2O4 is 1.3×10?5s. N2O4(g)?2NO2(g) Part A If N2O4 is...
The half-life for the first-order decomposition of N2O4 is 1.3×10?5s. N2O4(g)?2NO2(g) Part A If N2O4 is introduced into an evacuated flask at a pressure of 19.0 mmHg, how many seconds are required for the pressure of NO2 to reach 1.4 mmHg?
Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.65 L flask at a certain temperature...
Consider the reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.65 L flask at a certain temperature initially contains 0.764 g H2 and 97.0 g I2. At equilibrium, the flask contains 90.5 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Kc = ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT