In: Finance
A stock will pay no dividends for the next 3 years. Four years from now, the stock is expected to pay its first dividend in the amount of $2.1. It is expected to pay a dividend of $2.9 exactly five years from now. The dividend is expected to grow at a rate of 7% per year forever after that point. The required return on the stock is 12%. The stock's estimated price per share exactly TWO years from now, P2 , should be $______.
As per dividend discount model, price of stock is the present value of future dividends. | |||||||||||
Step-1:Calculation of present value of dividend upto five years from now i.e. dividend upto 3 years, 2 years from now: | |||||||||||
2 years from now | Dividend | Discount factor | Present value of dividend | ||||||||
Year | |||||||||||
a | b | c=1.12^-a | d=b*c | ||||||||
1 | 0 | 0.8929 | 0.00 | ||||||||
2 | $ 2.10 | 0.7972 | $ 1.67 | ||||||||
3 | $ 2.90 | 0.7118 | $ 2.06 | ||||||||
Total | $ 3.74 | ||||||||||
Step-2:Calculation of terminal value of dividend | |||||||||||
Terminal value of dividend | = | D3*(1+g)/(Ke-g) | Where, | ||||||||
= | 2.90*(1+0.07)/(0.12-0.07) | D3 | $ 2.90 | ||||||||
= | $ 62.06 | g | 7% | ||||||||
Ke | 12% | ||||||||||
Step-3:Calculation of present value of terminal value of dividend | |||||||||||
Present value of terminal value | = | $ 62.06 | * | (1+0.12)^-3 | |||||||
= | $ 62.06 | * | 0.71178 | ||||||||
= | $ 44.17 | ||||||||||
Step-4:Calculation of present value of all future dividends two years from now | |||||||||||
Present value of future dividends | = | $ 3.74 | + | $ 44.17 | |||||||
= | $ 47.91 | ||||||||||
Thus, | |||||||||||
The stock's estimated price per share exactly TWO years from now, P2 , should be | $ 47.91 | ||||||||||