In: Finance
A stock is expected to pay the following dividends: $1.2 four years from now, $1.6 five years from now, and $1.8 six years from now, followed by growth in the dividend of 5% per year forever after that point. There will be no dividends prior to year 4. The stock's required return is 13%. The stock's current price (Price at year 0) should be $____________.
As per dividend discount method, current stock price is the present value of dividends. | |||||||||||
Step-1:Present value of next 6 year's dividend | |||||||||||
Year | Dividend | Present value of 1 | Present value of dividend | ||||||||
a | b | c=1.13^-a | d=b*c | ||||||||
4 | $ 1.20 | 0.6133 | $ 0.74 | ||||||||
5 | $ 1.60 | 0.5428 | $ 0.87 | ||||||||
6 | $ 1.80 | 0.4803 | $ 0.86 | ||||||||
Total | $ 2.47 | ||||||||||
Step-2:Terminal value of dividend at the end of year 6 | |||||||||||
Terminal Value | = | D6*(1+g)/(Ke-g) | Where, | ||||||||
= | 1.80*(1+0.05)/(0.13-0.05) | D6 | Year 6 dividend | $ 1.80 | |||||||
= | $ 23.63 | g | Growth rate | 5% | |||||||
Ke | Required Return | 13% | |||||||||
Step-3:Present value of terminal value | |||||||||||
Present value | = | Terminal value at the end of Year 6*Present value of 1 | |||||||||
= | $ 23.63 | * | 0.4803 | ||||||||
= | $ 11.35 | ||||||||||
Working: | |||||||||||
Present value of 1 | = | (1+i)^-n | Where, | ||||||||
= | (1+0.13)^-6 | i | 13% | ||||||||
= | 0.48032 | n | 6 | ||||||||
Step-4:Present value of all dividends | |||||||||||
Present value of all dividends | = | $ 2.47 | + | $ 11.35 | |||||||
= | $ 13.82 | ||||||||||
Thus, | |||||||||||
The stock's current price (Price at year 0) should be | $ 13.82 | ||||||||||