Question

In: Advanced Math

Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...

Prove these scenarios by mathematical induction:

(1) Prove n2 < 2n for all integers n>4

(2) Prove that a finite set with n elements has 2n subsets

(3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps

Solutions

Expert Solution

Hence, n2 < 2n for all integers n>4

Hence,A finite set with n elements has 2n subsets

Hence every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps


Related Solutions

Use induction to prove that 2 + 4 + 6 + ... + 2n = n2...
Use induction to prove that 2 + 4 + 6 + ... + 2n = n2 + n for n ≥ 1. Prove this theorem as it is given, i.e., don’t first simplify it algebraically to some other formula that you may recognize before starting the induction proof. I'd appreciate if you could label the steps you take, Thank you!
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1)...
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1) / 6 .
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for...
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for n is a positive integer
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is...
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is divisible by 4 for all natural n.
Prove by induction that: 1) x^n - 1 is divisible by x-1 2)2n < 3^n for...
Prove by induction that: 1) x^n - 1 is divisible by x-1 2)2n < 3^n for all natural numbers n
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 +...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 + 100.
Use induction to prove that 8^n - 3^n is divisible by 5 for all integers n>=1.
Use induction to prove that 8^n - 3^n is divisible by 5 for all integers n>=1.
Ex 4. (a) Prove by induction that ∀n∈N,13+ 23+ 33+···+n3=[(n(n+ 1))/2]2 b) Prove by induction that...
Ex 4. (a) Prove by induction that ∀n∈N,13+ 23+ 33+···+n3=[(n(n+ 1))/2]2 b) Prove by induction that 2n>2n for every natural number n≥3.
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT