Question

In: Advanced Math

Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...

Prove these scenarios by mathematical induction:

(1) Prove n2 < 2n for all integers n>4

(2) Prove that a finite set with n elements has 2n subsets

(3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps

Solutions

Expert Solution

Hence, n2 < 2n for all integers n>4

Hence,A finite set with n elements has 2n subsets

Hence every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps


Related Solutions

Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1)...
By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1) / 6 .
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for...
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for n is a positive integer
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is...
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is divisible by 4 for all natural n.
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 +...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 22n+1 + 100.
Use induction to prove that 8^n - 3^n is divisible by 5 for all integers n>=1.
Use induction to prove that 8^n - 3^n is divisible by 5 for all integers n>=1.
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
Show by induction that for all n natural numbers 0+1+4+9+16+...+ n^2 = n(n+1)(2n+1)/6.
Use double induction to prove that (m+ 1)^n> mn for all positive integers m; n
Use double induction to prove that (m+ 1)^n> mn for all positive integers m; n
prove 2 is a factor of (n+1)(n+2) for all positive integers
prove 2 is a factor of (n+1)(n+2) for all positive integers
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a...
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a positive integer. HINT: 25 ≡ 4(mod 21)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT