Question

In: Statistics and Probability

Following is a simple linear regression model: yi = a+ bxi +ei The following results were...

Following is a simple linear regression model:

yi = a+ bxi +ei

The following results were obtained from some statistical software.

R2 = 0.523

syx(regression standard error) = 3.028

n (total observations) = 41

Significance level = 0.05 = 5%

Variable

Parameter Estimate

Std. Err. of Parameter Est.

Interecpt

0.519

0.132

Slope of X

-0.707

0.239

Note: For all the calculated numbers, keep three decimals.

6.

A 95% confidence interval for the slope b in the simple linear regression model is (10 points):

7.

A 95% confidence interval for the intercept a in the simple linear regression model is (10 points):

8.              The correlation coefficient r between the x and y is (10 points):

  1.            What is its meaning of R2 (10 points)?

10.            What is the meaning of the intercept in this simple linear regression model (5

                 points)?

11.             SST = ? (10 points)

12.            Are the intercept and slope significant at 5% significance level (Please use

                  the hypothesis test instead of looking at the confidence intervals) (10 points)?

Solutions

Expert Solution



Related Solutions

Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the...
Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for β̂0 and β̂1 are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of β̂1 will decline as the sample size increases. Explain the importance of this.
Suppose you estimate a simple linear regression Yi = β0 + β1Xi + ei. Next suppose...
Suppose you estimate a simple linear regression Yi = β0 + β1Xi + ei. Next suppose you estimate a regression only going through the origin, Yi = β ̃1Xi + ui. Which regression will give a smaller SSR (sum of squared residuals)? Why?
Question 1: Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain...
Question 1: Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for !β̂ and !β̂ are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of β! ̂ will decline as the sample size increases. Explain the importance of this. Question 2: Consider the following...
In a simple linear regression model yi = β0 + β1xi + εi with the usual...
In a simple linear regression model yi = β0 + β1xi + εi with the usual assumptions show algebraically that the least squares estimator β̂0 = b0 of the intercept has mean β0 and variance σ2[(1/n) + x̄2 / Sxx].
Following is a simple linear regression model: yi = /alpha + /beta xi + /epsilon i...
Following is a simple linear regression model: yi = /alpha + /beta xi + /epsilon i The following results were obtained from some statistical software. R2 = 0.735 syx (regression standard error) = 5.137 n (total observations) = 60 Significance level = 0.05 = 5% Variable Parameter Estimate Std. Err. of Parameter Est. Interecpt 0.325 0.097 Slope of X -1.263 0.309 1. Write the fitted model. (I ALREADY KNOW THE ANSWER TO THIS. I LEFT IT INCASE IT IS NEEDED...
The following portion of regression results was obtained when estimating a simple linear regression model. df...
The following portion of regression results was obtained when estimating a simple linear regression model. df SS MS F Regression 1 725.56 725.56 751.68 Residual 23 22.20 B Total 24 A Coefficients Standard Error t-stat p-value Intercept 80.30 2.08 38.68 1.95E-22 x −0.28 0.01 -27.42 4.54E-19 What is the sample regression equation? Interpret the slope coefficient for x1. Find the predicted value for y if x1 equals 200. Fill in the missing values A and B in the ANOVA table....
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui...
Consider a simple linear regression model with nonstochastic regressor: Yi = β1 + β2Xi + ui . 1. [3 points] What are the assumptions of this model so that the OLS estimators are BLUE (best linear unbiased estimates)? 2. [4 points] Let βˆ 1 and βˆ 2 be the OLS estimators of β1 and β2. Derive βˆ 1 and βˆ 2. 3. [2 points] Show that βˆ 2 is an unbiased estimator of β2.
Simple Linear Regression: Suppose a simple linear regression analysis provides the following results: b0 = 6.000,    b1...
Simple Linear Regression: Suppose a simple linear regression analysis provides the following results: b0 = 6.000,    b1 = 3.000,    sb0 = 0.750, sb1 = 0.500,  se = 1.364 and n = 24. Use this information to answer the following questions. (a) State the model equation. ŷ = β0 + β1x ŷ = β0 + β1x + β2sb1    ŷ = β0 + β1x1 + β2x2 ŷ = β0 + β1sb1 ŷ = β0 + β1sb1 x̂ = β0 + β1sb1 x̂ = β0 +...
The following is the estimation results for a multiple linear regression model: SUMMARY OUTPUT             Regression...
The following is the estimation results for a multiple linear regression model: SUMMARY OUTPUT             Regression Statistics R-Square                                                       0.558 Regression Standard Error (S)                  863.100 Observations                                               35                                Coeff        StdError          t-Stat    Intercept               1283.000    352.000           3.65    X1                             25.228        8.631                       X2                               0.861        0.372           Questions: Interpret each coefficient.
The following is the estimation results for a multiple linear regression model: SUMMARY OUTPUT             Regression...
The following is the estimation results for a multiple linear regression model: SUMMARY OUTPUT             Regression Statistics R-Square                                                       0.558 Regression Standard Error (S)                  863.100 Observations                                               35                                Coeff        StdError          t-Stat    Intercept               1283.000    352.000           3.65    X1                             25.228        8.631                       X2                               0.861        0.372           Question: 1. A. Write the fitted regression equation. B. Write the estimated intercepts and slopes, associated with their corresponding standard errors. C. Interpret each coefficient.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT