Question

In: Economics

Question 1: Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain...

Question 1:

Consider the simple regression model: !Yi = β0 + β1Xi + ei
(a) Explain how the Ordinary Least Squares (OLS) estimator formulas for !β̂ and !β̂ are derived.

  1. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain.

  2. (c) Other things equal, the standard error of β! ̂ will decline as the sample size increases. Explain the

    importance of this.

Question 2:

Consider the following data on 10 students:

1

01

Observation Weekly Food Expenditure Weekly Income

1

80

200

2

70

100

3

60

80

4

80

220

5

100

230

6

70

160

7

50

60

8

70

80

9

70

130

10

80

140

(a) Calculate the values of !β ̂ and β! ̂ for the simple linear regression model given by: 01

!food =β̂ +β̂income +e. i01 ii

  1. (b) Interpret those values in the context of the variable definitions and units of measurement.

  2. (c) Using the results from part (a), calculate the error (e! i) for each of the 10 observations.

(c) Calculate and interpret the standard error of tĥe regression (!se).

(d) Calculate and interpret the standard error of the β! ̂ estimate (!s ). 1β̂

(e) Test the null hypothesis that income has no effect on food expenditures. What do you conclude?

Solutions

Expert Solution

STEP 1:

Paste the data in MS-Excel

STEP 2:

Go to Data > Data Analysis > Regression

STEP:3

Select the range of X variable and Y variable , and tick the required result > Press apply button

You will get the explained details all that you need in the question as:

FOR BETTER UNDERSTANDING OF THE TABLE, REFER TO THE FOLLOWING TABLE:


Related Solutions

Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the...
Consider the simple regression model: !Yi = β0 + β1Xi + ei (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for β̂0 and β̂1 are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of β̂1 will decline as the sample size increases. Explain the importance of this.
Consider the simple regression model: Yi = β0 + β1Xi + e (a) Explain how the...
Consider the simple regression model: Yi = β0 + β1Xi + e (a) Explain how the Ordinary Least Squares (OLS) estimator formulas for β0 and β1are derived. (b) Under the Classical Linear Regression Model assumptions, the ordinary least squares estimator, OLS estimators are the “Best Linear Unbiased Estimators (B.L.U.E.).” Explain. (c) Other things equal, the standard error of will decline as the sample size increases. Explain the importance of this.
In a simple linear regression model yi = β0 + β1xi + εi with the usual...
In a simple linear regression model yi = β0 + β1xi + εi with the usual assumptions show algebraically that the least squares estimator β̂0 = b0 of the intercept has mean β0 and variance σ2[(1/n) + x̄2 / Sxx].
Suppose you estimate a simple linear regression Yi = β0 + β1Xi + ei. Next suppose...
Suppose you estimate a simple linear regression Yi = β0 + β1Xi + ei. Next suppose you estimate a regression only going through the origin, Yi = β ̃1Xi + ui. Which regression will give a smaller SSR (sum of squared residuals)? Why?
Consider the simple linear regression: Yi = β0 + β1Xi + ui whereYi and Xi...
Consider the simple linear regression: Yi = β0 + β1Xi + ui where Yi and Xi are random variables, β0 and β1 are population intercept and slope parameters, respectively, ui is the error term. Suppose the estimated regression equation is given by: Yˆ i = βˆ 0 + βˆ 1Xi where βˆ 0 and βˆ 1 are OLS estimates for β0 and β1. Define residuals ˆui as: uˆi = Yi − Yˆ i Show that: (a) (2 pts.) Pn i=1...
(i) Consider a simple linear regression yi = β0 + β1xi + ui Write down the...
(i) Consider a simple linear regression yi = β0 + β1xi + ui Write down the formula for the estimated standard error of the OLS estimator and the formula for the White heteroskedasticity-robust standard error on the estimated coefficient bβ1. (ii) What is the intuition for the White test for heteroskedasticity? (You do not need to describe how the test is implemented in practice.)
Consider a regression model Yi=β0+β1Xi+ui and suppose from a sample of 10 observations you are provided...
Consider a regression model Yi=β0+β1Xi+ui and suppose from a sample of 10 observations you are provided the following information: ∑10i=1Yi=71;  ∑10i=1Xi=42;  ∑10i=1XiYi=308; ∑10i=1X2i=196 Given this information, what is the predicted value of Y, i.e.,Yˆ for x = 12? 1. 14 2. 11 3. 13 4. 12 5. 15
Suppose you estimate the following regression model using OLS: Yi = β0 + β1Xi + β2Xi2...
Suppose you estimate the following regression model using OLS: Yi = β0 + β1Xi + β2Xi2 + β3Xi3+ ui. You estimate that the p-value of the F-test that β2= β3 =0 is 0.01. This implies: options: You can reject the null hypothesis that the regression function is linear. You cannot reject the null hypothesis that the regression function is either quadratic or cubic. The alternate hypothesis is that the regression function is either quadratic or cubic. Both (a) and (c).
1. Consider the linear regression model for a random sample of size n: yi = β0...
1. Consider the linear regression model for a random sample of size n: yi = β0 + vi ; i = 1, . . . , n, where v is a random error term. Notice that this model is equivalent to the one seen in the classroom, but without the slope β1. (a) State the minimization problem that leads to the estimation of β0. (b) Construct the first-order condition to compute a minimum from the above objective function and use...
Following is a simple linear regression model: yi = a+ bxi +ei The following results were...
Following is a simple linear regression model: yi = a+ bxi +ei The following results were obtained from some statistical software. R2 = 0.523 syx(regression standard error) = 3.028 n (total observations) = 41 Significance level = 0.05 = 5% Variable Parameter Estimate Std. Err. of Parameter Est. Interecpt 0.519 0.132 Slope of X -0.707 0.239 Note: For all the calculated numbers, keep three decimals. 6. A 95% confidence interval for the slope b in the simple linear regression model...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT