In: Statistics and Probability
If Z is a standard normal random variable, find the value z0 for the following probabilities. (Round your answers to two decimal places.)
(a) P(Z > z0) = 0.5
z0 =
(b) P(Z < z0) = 0.9279
z0 =
(c) P(−z0 < Z < z0) = 0.90
z0 =
(d) P(−z0 < Z < z0) = 0.99
z0 =
Using standard normal table,
P(Z > z0) = 0.5
= 1 - P(Z < z0) = 0.5
= P(Z < z0) = 1 - 0.5.
= P(Z < z0 ) = 0.5
= P(Z < 0 ) = 0.5
z0 =0 (using standard normal (Z) table )
(B)
Using standard normal table,
P(Z < z0) = 0.9279
= P(Z < z0) = 0.9279
= P(Z < 1.46) = 0.9279
z0 = 1.46 Using standard normal table,
(C)
middle 90% of score is
P(-z < Z < z) = 0.90
P(Z < z) - P(Z < -z) = 0.90
2 P(Z < z) - 1 = 0.90
2 P(Z < z) = 1 + 0.90 =1.90
P(Z < z) = 1.90 / 2 = 0.95
P(Z < 1.65) = 0.95
z0 ±1.65 using z table
(D)
middle 99% of score is
P(-z < Z < z) = 0.99
P(Z < z) - P(Z < -z) = 0.99
2 P(Z < z) - 1 = 0.99
2 P(Z < z) = 1 + 0.90 =1.99
P(Z < z) = 1.99/ 2 = 0.995
P(Z < 2.58) = 0.995
z0 ±2.58 using z table