Question

In: Statistics and Probability

A college admissions officer for the school’s online undergraduate program wants to estimate the mean age...

A college admissions officer for the school’s online undergraduate program wants to estimate the mean age of its graduating students. The administrator took a random sample of 40 from which the mean was 24 years and the standard deviation was 1.7 years.

If the mean age of online undergraduate students was 23 years of age, what is the probability that the sample of 40 would have produced a mean age of 24 or higher? Be sure to set up the two competing hypotheses and provide a statistical conclusion statement at a 5% level of significance for your results.

Solutions

Expert Solution

please like ??


Related Solutions

An admissions director wants to estimate the mean age of all students enrolled at a college....
An admissions director wants to estimate the mean age of all students enrolled at a college. The estimate must be within 1 years of the population mean. Assume the population of ages is normally distributed and the population standard deviation is 9.5 years. Determine the minimum sample size required to construct a 80% confidence interval for the population mean age. Determine the minimum sample size required to construct a 95% confidence interval for the population mean age. Which level of...
A college admissions director wishes to estimate the mean age of all students currently enrolled. In...
A college admissions director wishes to estimate the mean age of all students currently enrolled. In a random sample of 81 students, the mean age is found to be 20.51 years. From past studies, the standard deviation of the population is known to be 2 years, and the population is normally distributed. Construct a 99% confidence interval of the population mean age. (Round off final answers to two decimal places, if appropriate. Do not round off numbers taken directly from...
A college admissions director wishes to estimate the mean age of all students currently enrolled. In...
A college admissions director wishes to estimate the mean age of all students currently enrolled. In a random sample of 19 students, the mean age is found to be 22.4 years. From past studies, the ages of enrolled students are normally distributed with a standard deviation of 9.5 years. Construct a 90% confidence interval for the mean age of all students currently enrolled. 1. What is the critical value? 2. What is the standard deviation of the sample mean? 3....
A college admissions director wishes to estimate the mean age of all students currently enrolled. In...
A college admissions director wishes to estimate the mean age of all students currently enrolled. In a random sample of 19 students, the mean age is found to be 22.4 years. From past studies, the ages of enrolled students are normally distributed with a standard deviation of 9.5 years. Construct a 90% confidence interval for the mean age of all students currently enrolled. 1. what is the critical value ? 2. the margin of error?
A college admissions director wishes to estimate the mean age of all students currently enrolled. In...
A college admissions director wishes to estimate the mean age of all students currently enrolled. In a random sample of 22 students, the mean age is found to be 21.4 years. From past studies, the ages of enrolled students are normally distributed with a standard deviation of 10.2 years. Construct a 90% confidence interval for the mean age of all students currently enrolled. b. The standard deviation of the sample mean:
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's male and female applicants. A random sample of 19 male applicants results in a SAT scoring mean of 1101 with a standard deviation of 30. A random sample of 9 female applicants results in a SAT scoring mean of 1014 with a standard deviation of 29. Using this data, find the 98% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 16 in-state applicants results in a SAT scoring mean of 1144 with a standard deviation of 55. A random sample of 10 out-of-state applicants results in a SAT scoring mean of 1185 with a standard deviation of 41. Using this data, find the 99% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 16 in-state applicants results in a SAT scoring mean of 1144 with a standard deviation of 55. A random sample of 10 out-of-state applicants results in a SAT scoring mean of 1185 with a standard deviation of 41. Using this data, find the 99% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 88 in-state applicants results in a SAT scoring mean of 1119 with a standard deviation of 57. A random sample of 18 out-of-state applicants results in a SAT scoring mean of 1020 with a standard deviation of 35. Using this data, find the 95% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 9 in-state applicants results in a SAT scoring mean of 1176 with a standard deviation of 44. A random sample of 16 out-of-state applicants results in a SAT scoring mean of 1105 with a standard deviation of 53. Using this data, find the 98% confidence interval for the true mean difference between the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT