Question

In: Statistics and Probability

The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...

The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 16 in-state applicants results in a SAT scoring mean of 1144 with a standard deviation of 55. A random sample of 10 out-of-state applicants results in a SAT scoring mean of 1185 with a standard deviation of 41. Using this data, find the 99% confidence interval for the true mean difference between the scoring mean for in-state applicants and out-of-state applicants. Assume that the population variances are not equal and that the two populations are normally distributed.

Step 1 of 3: Find the point estimate that should be used in constructing the confidence interval.

Solutions

Expert Solution

T-test for two Means Confidence Interval -Unequal Variance

The following information about the sample has been provided:
a. Sample Means : Xˉ1​=1144 and Xˉ2​=1185
b. Sample Standard deviation: s1=55 and s2=41
c. Sample size: n1=16 and n2=10
d. Level of confidence is 99%

Point estimate

= 1144-1185

= -41

The degrees of freedom
Assuming that the population variances are unequal, the degrees of freedom are given by


Critical Value
Based on the information provided, the significance level is α=0.01, and the degree of freedom is 23.0983. Therefore the critical value is tc​=2.8073. This can be found by either using excel or the t distribution table.

Standard Error
The Standard error is computed as:


Confidence Interval
The 99% Confidence interval is computed as:


Therefore, we are 99% confident that the true difference between population means is contained by the interval (-94.0551, 12.0551)


Related Solutions

The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's male and female applicants. A random sample of 19 male applicants results in a SAT scoring mean of 1101 with a standard deviation of 30. A random sample of 9 female applicants results in a SAT scoring mean of 1014 with a standard deviation of 29. Using this data, find the 98% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 16 in-state applicants results in a SAT scoring mean of 1144 with a standard deviation of 55. A random sample of 10 out-of-state applicants results in a SAT scoring mean of 1185 with a standard deviation of 41. Using this data, find the 99% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 88 in-state applicants results in a SAT scoring mean of 1119 with a standard deviation of 57. A random sample of 18 out-of-state applicants results in a SAT scoring mean of 1020 with a standard deviation of 35. Using this data, find the 95% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 9 in-state applicants results in a SAT scoring mean of 1176 with a standard deviation of 44. A random sample of 16 out-of-state applicants results in a SAT scoring mean of 1105 with a standard deviation of 53. Using this data, find the 98% confidence interval for the true mean difference between the...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT)...
The admissions officer at a small college compares the scores on the Scholastic Aptitude Test (SAT) for the school's in-state and out-of-state applicants. A random sample of 8 in-state applicants results in a SAT scoring mean of 1048 with a standard deviation of 44. A random sample of 1616 out-of-state applicants results in a SAT scoring mean of 1147 with a standard deviation of 43. Using this data, find the 98% confidence interval for the true mean difference between the...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514. SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514.† SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514.† SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514. SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level...
The College Board provided comparisons of Scholastic Aptitude Test (SAT) scores based on the highest level of education attained by the test taker's parents. A research hypothesis was that students whose parents had attained a higher level of education would on average score higher on the SAT. The overall mean SAT math score was 514. SAT math scores for independent samples of students follow. The first sample shows the SAT math test scores for students whose parents are college graduates...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT