Question

In: Physics

Q1. A) Two slits are 0.450 mm apart and 75.0 cm from a screen. What is...

Q1. A) Two slits are 0.450 mm apart and 75.0 cm from a screen. What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 500 nm?

B) If the entire set-up is now placed in water, what will be the distance between the second and third dark lines?

I understand part A but am a little confused on how to solve part B. Any help would be appreciated! Thank you.

Solutions

Expert Solution


Related Solutions

Two slits are 0.08mm apart, and the screen is 1.5m away. How far is the 3rd...
Two slits are 0.08mm apart, and the screen is 1.5m away. How far is the 3rd dark fringe located from the central maximum if light of wavelength 600 nm is used? 3.75 cm 2.81 cm 3.75 m 2.81 m 2. Light (600nm) strikes a grating ruled with 350 lines/mm. What is the angular deviation of the 2nd order bright fringe? 21.1 degree 22 degree 24.8 degree 25.4 degree 3. What is light? What we see with our eyes a form...
The diffraction pattern of two slits is imaged on a screen far from the slits. Which...
The diffraction pattern of two slits is imaged on a screen far from the slits. Which one of the following statements is true? (a) The absolute maximum intensity is located an equal distance from both slits. (b) There is only one local maximum. (c) Destructive interference occurs at a point an equal distance from two slits. (d) There is only one point where destructive interference occurs.
If 735-nm and 620-nm light passes through two slits 0.78 mm apart, how far apart are...
If 735-nm and 620-nm light passes through two slits 0.78 mm apart, how far apart are the second-order fringes for these two wavelengths on a screen 1.0 m away? Express your answer to two significant figures and include the appropriate units. Δx =   
A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent...
A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent light source. A fringe pattern is observed on a screen 4.8 m from the slits. If there are 5.0 bright fringes/cm on the screen, what is the wavelength of the monochromatic light? A) 550 nm       B) 600 nm       C) 650 nm       D) 700 nm       E) 750 nm
Two 2.0 cm ×2.0 cm square aluminum electrodes, spaced 0.80 mm apart, are connected to a...
Two 2.0 cm ×2.0 cm square aluminum electrodes, spaced 0.80 mm apart, are connected to a 200 V battery. Part A---- What is the capacitance? Express your answer in picofarads. Part B ----What is the charge on the positive electrode? Express your answer in coulombs.
A vertically polarized laser beam (wavelength 400 nm) passes through a polarizer (60° from vertical) and two slits that are 0.1 mm apart.
A vertically polarized laser beam (wavelength 400 nm) passes through a polarizer (60° from vertical) and two slits that are 0.1 mm apart. Each slit is 800 nm wide. The light hits a screen 1 m away.a. What is the frequency of the laser light?b. What fraction of light intensity is transmitted through the polarizer?c. At what angle does the second-order maximum occur?d. One slit is blocked. What is the width of the central maximum on the screen?
Two 3.0 mm × 3.0 mm electrodes are held 0.10 mm apart and are attached to...
Two 3.0 mm × 3.0 mm electrodes are held 0.10 mm apart and are attached to 7.0 V battery. Without disconnecting the battery, a 0.10-mm-thick sheet of Mylar is inserted between the electrodes. What is the capacitor's electric field after the Mylar is inserted? PS: 6.98*10^4 is not correct answer
Light from a red laser (650 nm) is incident on two slits separated by 0.5 mm....
Light from a red laser (650 nm) is incident on two slits separated by 0.5 mm. Each slit is 0.25 mm wide. Quantitatively sketch the pattern you would observe on a screen that is located 2.0 m from the slits. Your sketch should range from -10 mm to 10 mm and include only the fringes you would observe. (Label the locations of the fringes) PLEASE EXPLAIN THOROUGHLY!!!!
Two thin slits separated by 0.0880 mm are illuminated by light from a He-Ne laser (?...
Two thin slits separated by 0.0880 mm are illuminated by light from a He-Ne laser (? = 633 nm), producing interference fringes on a distant screen. Find the angle between the centers of the central bright fringe and the next bright fringe.
You are given a slide with two slits cut into it and asked how far apart...
You are given a slide with two slits cut into it and asked how far apart the slits are. You shine light composed of two wavelength (red and violet) on the slide and notice the first-order spectrum that is created on a screen 3.40 ? away. On the screen, the red light with a wavelength of 700 ?? is separated from the violet light with a wavelength of 400 ?? by 7.00 ??. (a) What is the separation of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT