Question

In: Physics

Two thin slits separated by 0.0880 mm are illuminated by light from a He-Ne laser (?...

Two thin slits separated by 0.0880 mm are illuminated by light from a He-Ne laser (? = 633 nm), producing interference fringes on a distant screen. Find the angle between the centers of the central bright fringe and the next bright fringe.

Solutions

Expert Solution

Here is what I solved before, please modify the figures as per your question. Please let me know if you have further questions. Ifthis helps then kindly rate 5-stars.

Two thin slits separated by 0.0634 mm are illuminated by light from a He-Ne laser (? = 633 nm), producing interference fringes on a distant screen. Find the angle between the centers of the central bright fringe and the next bright fringe.

Given:

distance between the slits d = 0.0634 mm

                                            = wavelength of the He-Ne laer (?) = 633 nm

                                                      = 633*10-9 m

......................................................................................................

bright fringes are at an angle from the central bright fringe

? = sin-1 (2?/d) ...... (1)

plug the values in equation 1 we have

? = sin-1 (2*633*10-9 m /0.0634*10-3 m )

   = 1.140


Related Solutions

Light from a red laser (650 nm) is incident on two slits separated by 0.5 mm....
Light from a red laser (650 nm) is incident on two slits separated by 0.5 mm. Each slit is 0.25 mm wide. Quantitatively sketch the pattern you would observe on a screen that is located 2.0 m from the slits. Your sketch should range from -10 mm to 10 mm and include only the fringes you would observe. (Label the locations of the fringes) PLEASE EXPLAIN THOROUGHLY!!!!
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated...
Light at 633 nm from a helium–neon laser shines on a pair of parallel slits separated by 1.57 ✕ 10−5 m and an interference pattern is observed on a screen 2.10 m from the plane of the slits. 1. find angle from central maximum to first bright fringe 2. at what angle from central maximum does the second dark fringe appear? 3. find the distance (in m) from the central maximum to the first bright fringe.
Light of wavelength 600 nm passes though two slits separated by 0.25 mm and is observed...
Light of wavelength 600 nm passes though two slits separated by 0.25 mm and is observed on a screen 1.3 m behind the slits. The location of the central maximum is marked on the screen and labeled y = 0. A .At what distance, on either side of y = 0, are the m = 1 bright fringes? B.A very thin piece of glass is then placed in one slit. Because light travels slower in glass than in air, the...
1. Coherent light of wavelength 525 nm passes through two thin slits that are 0.0415 mm...
1. Coherent light of wavelength 525 nm passes through two thin slits that are 0.0415 mm apart and falls on a screen 75.0 cm away. How far away from the central bright fringe on the screen is a.) the fifth bright fringe (not counting the central bright fringe) b.) the eighth dark fringe 2. Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 3.00...
Suppose that you shine light from a laser through two slits that are placed one in...
Suppose that you shine light from a laser through two slits that are placed one in front of the other, separated by 0.6mm. The width of each slit is 0.12mm. The light will travel from the laser, through the slits, and onto a screen 1.5m away. a. Predict what you will observe on the screen, and compare it to what you would expect from single-slit diffraction. b. If ray (geometrical optics) accurately described this siutation, what would the pattern on...
Light from a He-Ne laser (wavelength 633nm) passes through a single slit of width 25μm. At...
Light from a He-Ne laser (wavelength 633nm) passes through a single slit of width 25μm. At the screen a distance away, the intensity at the center of the central maxima is 8.25 W/m^2. a. Draw a clear diagram showing the slit and the intensity pattern seen on the screen. Label key quantities and key features. b. Find the maximum number of totally dark fringes (minima) seen on the screen. c. At what angle does the dark fringe (minima) that is...
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits....
Light from a helium-neon laser (? = 633 nm) is used to illuminate two narrow slits. The interference pattern is observed on a screen 3.3m behind the slits. Eleven bright fringes are seen, spanning a distance of 54mm . What is the spacing (in mm) between the slits?
A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent...
A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent light source. A fringe pattern is observed on a screen 4.8 m from the slits. If there are 5.0 bright fringes/cm on the screen, what is the wavelength of the monochromatic light? A) 550 nm       B) 600 nm       C) 650 nm       D) 700 nm       E) 750 nm
An optical system consists of two thin lenses: +100. mm and -20.0 mm. They are separated...
An optical system consists of two thin lenses: +100. mm and -20.0 mm. They are separated by a distance of 50.0 mm. An object is placed 50.0 mm in front of the +100. mm lens. Determine: a.   the final image location, and b.   transverse magnification. c.   Is the final image real or virtual? Why?
a) 500 nm light shines through two slits with a width of 0.02 mm and a...
a) 500 nm light shines through two slits with a width of 0.02 mm and a separation of 0.08 mm. List the first two missing orders. b) How many bright spots are contained in the central diffraction maximum? c) What is the width of the central diffraction maximum? d) Find the angle (theta) associated with the first dark spot on the screen.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT