Question

In: Physics

A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent...

A pair of narrow slits that are 1.8 mm apart is illuminated by a monochromatic coherent light source. A fringe pattern is observed on a screen 4.8 m from the slits. If there are 5.0 bright fringes/cm on the screen, what is the wavelength of the monochromatic light?

A) 550 nm       B) 600 nm       C) 650 nm       D) 700 nm       E) 750 nm


Solutions

Expert Solution

apply Y = mLR/d

d = 1.8 mm

so wavelgnth L = Yd/mR

L = (1*10^-2 * 1.8 mm/(5 * 4.8)

L = 750 nm


Related Solutions

9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits...
9) Monochromatic coherent light shines through a pair of slits. If the distance between these slits is decreased, which of the following statements are true of the resulting interference pattern? (There could be more than one correct choice.) A) The distance between the maxima stays the same. B) The distance between the maxima decreases. C) The distance between the minima stays the same. D) The distance between the minima increases. E) The distance between the maxima increases.
2. A monochromatic light with wavelength 540.0 nm strikes a pair of narrow slits. An interference...
2. A monochromatic light with wavelength 540.0 nm strikes a pair of narrow slits. An interference pattern is produced on a screen kept 4.00 m away. The first dark fringe is formed at a distance 5.40 mm away from the center. (a) What is the separation between the two slits? [5] (b) What is the distance on the screen from the center of the interference pattern to the 3rd minimum (m = 2)? [5] (c) What is the shortest distance...
Two narrow slits 60 μm apart are illuminated with light of wavelength 500nm. The light shines...
Two narrow slits 60 μm apart are illuminated with light of wavelength 500nm. The light shines on a screen 1.2 m distant. How far is this fringe from the center of the pattern?
Suppose you illuminate two thin slits by monochromatic coherent light in air and find that they...
Suppose you illuminate two thin slits by monochromatic coherent light in air and find that they produce their first interference minima at \pm 35.09 degrees on either side of the central bright spot. You then immerse these slits in a transparent liquid and illuminate them with the same light. Now you find that the first minima occur at \pm 19.48 degrees instead. a) What is the index of refraction of this liquid? Express your answer using four significant figures.
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that...
Blue light of wavelength 470 nm is used to illuminate a pair of narrow slits that are 0.020 mm apart and 1.60 m from a screen. (a) What is the angular position of the second-order minimum (dark spot)? (b) What is the distance on the screen between the central maximum and the second-order minimum? (c) The reason there is a dark spot at this location on the screen is because light from one slit has to travel further than light...
Two thin slits separated by 0.0880 mm are illuminated by light from a He-Ne laser (?...
Two thin slits separated by 0.0880 mm are illuminated by light from a He-Ne laser (? = 633 nm), producing interference fringes on a distant screen. Find the angle between the centers of the central bright fringe and the next bright fringe.
Light of wavelength 600 nm is incident on a pair of slits 2,000 nm apart. Find...
Light of wavelength 600 nm is incident on a pair of slits 2,000 nm apart. Find the angular deviation of (a) the first minimum, (b) the first, second, and third maxima above the central one. (c) What is the longest wavelength for which there are four maxima above the central one? (d) The same light is incident on a diffraction grating with adjacent slits 2,000 nm apart. Compare and contrast the resulting interference pattern with that of the two-slit system.
Problem 3: Double-slit experiment The monochromatic light diffracts on the two slits which are 0.1 mm...
Problem 3: Double-slit experiment The monochromatic light diffracts on the two slits which are 0.1 mm apart (their size is negligible) and produces an interference pattern on the wall which is 3 m far from the apparatus. a) The distance between the central bright fringe and the first off-center bright fringe is 2 cm. What is the wavelength of the light? Which color is it? b) How many bright and dark fringes could we see on the wall? c) We...
1. Coherent light of wavelength 525 nm passes through two thin slits that are 0.0415 mm...
1. Coherent light of wavelength 525 nm passes through two thin slits that are 0.0415 mm apart and falls on a screen 75.0 cm away. How far away from the central bright fringe on the screen is a.) the fifth bright fringe (not counting the central bright fringe) b.) the eighth dark fringe 2. Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 3.00...
Q1. A) Two slits are 0.450 mm apart and 75.0 cm from a screen. What is...
Q1. A) Two slits are 0.450 mm apart and 75.0 cm from a screen. What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 500 nm? B) If the entire set-up is now placed in water, what will be the distance between the second and third dark lines? I understand part A but am a little confused on how to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT