Question

In: Chemistry

Calculate the free-energy change for ammonia synthesis at 25 ? C(298 K) given the following sets...

Calculate the free-energy change for ammonia synthesis at 25 ? C(298 K) given the following sets of partial pressures:

a.1.0 atm N2, 3.0 atm H2, 0.020 atm NH3

b. 0.010 atm N2, 0.030 atm H2, 2.0 atm NH3

Solutions

Expert Solution

a) N2 (g) + 3 H2 (g) <---------------> 2 NH3 (g)

Qp = P2NH3 / PN2 x P3H2

     = (0.020)2 / 1.0 x (3.0)^3

     = 1.48 x 10^-5

T = 25 + 273 =298 K

R = universal gas constant = 8.314 x 10^-3 kJ/K mol

standard Gibbs free energy G0 = ?

relation between these two

G0 = - RT ln Qp

          = - 2.303 RT log Qp

          = - 2.303 x 8.314 x 10^-3 x 298 x log (1.48 x 10^-5)

          = 27.55 kJ

standard Gibbs free energy G0 = 27.5 kJ

b)

Qp = P2NH3 / PN2 x P3H2

     = (2.0)2 / 0.010 x (0.030)^3

     = 1.48 x 10^7

G0 = - RT ln Qp

          = - 2.303 RT log Qp

          = - 2.303 x 8.314 x 10^-3 x 298 x log (1.48 x 10^7)

          = - 40.9 kJ

standard Gibbs free energy G0 = - 40.9 kJ


Related Solutions

1. Calculate the free energy change of the following processes at 298 K from the given...
1. Calculate the free energy change of the following processes at 298 K from the given information. At what temperature range would each of these be spontaneous?: a) ∆H˚ = 293 kJ; ∆S˚ = -695 J/K b) ∆H˚ = -1137 kJ; ∆S˚ = 0.496 kJ/K c) ∆H˚ = -86.6 kJ; ∆S˚ = -382 J/K 2-. Given the following chemical reactions, determine the heat of hydrogenation for C3H4(g) + 2 H2(g)  C3H8(g), and write the balanced thermochemical equation corresponding to...
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C....
Calculate the standard change in Gibbs free energy, ΔGrxn∘, for the given reaction at 25.0 ∘C. Consult the table of thermodynamic properties for standard Gibbs free energy of formation values. KBr(s)↽−−⇀K+(aq)+Br−(aq) ΔGrxn°=    ?    kJ/mol Determine the concentration of K+(aq) if the change in Gibbs free energy, nΔGrxn, for the reaction is −8.95 kJ/mol. [K+] =    ? M
Calculate the equilibrium constant at 298 K for the reaction of ammonia with oxygen to form...
Calculate the equilibrium constant at 298 K for the reaction of ammonia with oxygen to form nitrogen and water. The data refer to 298 K. 4NH3(g) + 3O2(g) <> 2N2(g) + 6H2O(l) Substance NH3(g) O2(g) N2(g) H2O(l) ΔH°f (kJ/mol) -46 0 0 -285 ΔG°f (kJ/mol) -16 0 0 -237 S°(J/K·mol) 192 205 192 70 I thought Kc is just Molar concentration of Products divide by Molar concentration on Reactants which would be 12 x 16 divide by 14 x 13...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. (Assume that all reactants and products are in their standard states.) Part A ΔH∘rxn=−84kJ, ΔS∘rxn=−157J/K, T=302K Express your answer as an integer. Part B ΔH∘rxn=−84kJ, ΔS∘rxn=−157J/K, T=860K Express your answer as an integer. Part C ΔH∘rxn=84kJ, ΔS∘rxn=−157J/K, T=302K Express your answer as an integer. Part D ΔH∘rxn=−84kJ, ΔS∘rxn=157J/K, T=398K Express your answer as an integer.
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. (Assume that all reactants and products are in their standard states.) Part A: ΔH∘rxn=−80.kJ, ΔS∘rxn=−154J/K, T=292K Express your answer as an integer. Part B: ΔH∘rxn=−80.kJ, ΔS∘rxn=−154J/K, T=851K Express your answer as an integer. Part C: ΔH∘rxn=80.kJ, ΔS∘rxn=−154J/K, T=292K Express your answer as an integer. Part D: ΔH∘rxn=−80.kJ, ΔS∘rxn=154J/K, T=392K Express your answer as an integer.
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn,...
Calculate the change in Gibbs free energy for each of the following sets of ΔH∘rxn, ΔS∘rxn, and T. ΔH∘rxn=− 132 kJ ; ΔS∘rxn= 260 J/K ; T= 310 K ΔH∘rxn= 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 310 K ΔH∘rxn=− 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 310 K ΔH∘rxn=− 132 kJ ; ΔS∘rxn=− 260 J/K ; T= 563 K
Using the given data, calculate the change in Gibbs free energy for each of the following...
Using the given data, calculate the change in Gibbs free energy for each of the following reactions. In each case indicate whether the reaction is spontaneous at 298 K under standard conditions. Part A: 2Ag (s) + Cl2 (g) --> 2AgCl (s) Gibbs free energy for AgCl (s) is -109.70 kJ/mol Part B: spontaneous or nonspontaneous Part C: P4O10 (s) + 16H2 (g) --> 4PH3 (g) + 10H2O (g) Gibbs free energy for P4O10 (s) is -2675.2 kJ/mol Gibbs free...
Calculate the free-energy change of the following reaction at 352°C and standard pressure. Values in the...
Calculate the free-energy change of the following reaction at 352°C and standard pressure. Values in the table are at standard pressure and 25°C. C2H4 + 3O2 --> 2CO2 +2H2O ΔHºf,(kJ/mol) Sºf, J/mol•K ΔGºf, kJ/mol C2H4(g) 52.3 219.5 68.1 O2(g) 0 205.0 0 CO2(g) -393.5 213.6 -394.4 H2O(g) -241.8 188.7 -228.6
Given that ΔG∘ = −13.6 kJ/mol, calculate ΔG at 25∘C for the following sets of conditions....
Given that ΔG∘ = −13.6 kJ/mol, calculate ΔG at 25∘C for the following sets of conditions. 1) 30 atm NH3, 30 atm CO2, 4.0 M NH2CONH2 Express the free energy in kilojoules per mole to two significant figures. 2) 8.0×10−2 atm NH3, 8.0×10−2 atm CO2, 1.0 M NH2CONH2 Express the free energy in kilojoules per mole to two significant figures. Is the reaction spontaneous for the conditions in Part A and/or Part B? A) Is the reaction spontaneous for the...
has a standard free-energy change of –3.82 kJ/mol at 25 °C. What are the concentrations of...
has a standard free-energy change of –3.82 kJ/mol at 25 °C. What are the concentrations of A, B, and C at equilibrium if, at the beginning of the reaction, their concentrations are 0.30 M, 0.40 M, and 0 M, respectively
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT