Question

In: Mechanical Engineering

Air within a piston-cylinder assembly execute an ideal Carnot power cycle within maximum and minimum temperatures...

Air within a piston-cylinder assembly execute an ideal Carnot power cycle within maximum and minimum temperatures of 600 K and 300 k, respectively. The heat added at the high temperature is 250 kJ/kg. The lowest pressure in the cycle is 75 kPa. Assuming the ideal gas model for the air (constant cv, cp, k, with the following properties: kair = 1.4, cv,air = 0.717 J/g.K, Mair = 28.97 g/mol, Universal Gas Constant 8.314 /( . ) _ R = J mol K ),

(a) Sketch the cycle on a p-V diagram;

(b) Determine the thermal efficiency of the cycle;

(c) Determine the specific volume and pressure after the heat rejection process;

(d) Determine the net work per unit mass of the cycle;

(e) Determine the work per unit mass in each of the adiabatic processes.

Solutions

Expert Solution


Related Solutions

Q2. Two kilograms of air within a piston-cylinder configuration execute a Carnot power cycle between temperatures...
Q2. Two kilograms of air within a piston-cylinder configuration execute a Carnot power cycle between temperatures 750 K and 300 K. The isothermal expansion is associated with a heat input of 60 kJ from the surroundings. The volume after expansion has occurred isothermally is 0.4 m3 . Assuming air behaves as an ideal gas, calculate: (i) thermal efficiency for the cycle (ii) pressure and volume at the beginning of the isothermal expansion, in kPa and m3 , respectively. (iii) the...
Q2. Two kilograms of air within a piston-cylinder configuration execute a Carnot power cycle between temperatures...
Q2. Two kilograms of air within a piston-cylinder configuration execute a Carnot power cycle between temperatures 750 K and 300 K. The isothermal expansion is associated with a release of 60 kJ of heat into the surroundings. The volume after expansion has occurred isothermally is 0.4 m3 . Assuming air behaves as an ideal gas, calculate: (i) thermal efficiency for the cycle (ii) pressure and volume at the beginning of the isothermal expansion, in kPa and m3 , respectively. (iii)...
Air within a piston cylinder assembly executes a Carnot refrigeration cycle between hot and cold reservoirs...
Air within a piston cylinder assembly executes a Carnot refrigeration cycle between hot and cold reservoirs at TH=500 K and TC=300 K, respectively. The magnitude of the heat transfer rejected to the high temperature reservoir is 250 kJ per kg of air. The pressure at the start of the isothermal expansion is 325 kPa. The air can be modeled as an ideal gas with constant specific heat. For the air as a system, determine a. (5) the coefficient of performance....
A Carnot heat engine within a piston cylinder has 10 kg of air as the working...
A Carnot heat engine within a piston cylinder has 10 kg of air as the working fluid and operates between 1000 K and 350 K. During the heat addition process the pressure changes by a factor of 2.5. The volume at the end of the isentropic compression process is 5m^3. Determine the pressure at each state in kPa and the net heat of the cue in KJ assuming Constant Heats at 300 K. Draw a P-v and T-s diagram
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows:...
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows: 1-2 isentropic compression from an initial temperature T1 5 208C with a compression ratio r 5 5 2-3 constant pressure heat addition 3-1 constant volume heat rejection The gas has constant specific heats with cv 5 0.7 kJ/kg·K and R 5 0.3 kJ/kg·K. (a) Sketch the P-v and T-s diagrams for the cycle. (b) Determine the heat and work interactions for each pro- cess,...
In an air standard Otto cycle, the maximum and minimum temperatures are 1400 and 15?C. The...
In an air standard Otto cycle, the maximum and minimum temperatures are 1400 and 15?C. The heat supplied per kilogram of air is 800 kJ. Calculate the compression ratio and the cycle efficiency. Calculate also the ratio of maximum to minimum pressures in the cycle. ANSWERS(5.24/1; 48.5%; 30.42/1
Thirty-six grams of air in a piston–cylinder assembly undergo a Stirling cycle with a compression ratio...
Thirty-six grams of air in a piston–cylinder assembly undergo a Stirling cycle with a compression ratio of 7.5. At the beginning of the isothermal compression, the pressure and volume are 1 bar and 0.03 m3, respectively. The temperature during the isothermal expansion is 1200 K. Assuming the ideal gas model and ignoring kinetic and potential energy effects, determine: (a) the net work, in kJ. (b) the percent thermal efficiency. (c) the mean effective pressure, in bar.
Air within a piston–cylinder assembly, initially at 15 lbf/ in.2, 510°R, and a volume of 6...
Air within a piston–cylinder assembly, initially at 15 lbf/ in.2, 510°R, and a volume of 6 ft3, is compressed isentropically to a final volume of 1.75 ft3. Assuming the ideal gas model with k = 1.4 for the air, determine the: (a) mass, in lb. (b) final pressure, in lbf/in.2 (c) final temperature, in °R. (d) work, in Btu.
Analyze Carnot Cycle for ideal gases
Analyze Carnot Cycle for ideal gases
Constant amount of ideal gas is kept inside a cylinder by a piston. The piston is...
Constant amount of ideal gas is kept inside a cylinder by a piston. The piston is locked in to position, it is not allowed to move. The gas is then heated up. Compare the initial (i) and the final (f) physical quantities of the gas to each other. (The fill in the blank options are greater than, less than, or equal too). The volume Vf is ... Vi. The temperature Tf is ... Ti. The internal energy Uf is ......
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT