Question

In: Physics

Constant amount of ideal gas is kept inside a cylinder by a piston. The piston is...

Constant amount of ideal gas is kept inside a cylinder by a piston. The piston is locked in to position, it is not allowed to move. The gas is then heated up. Compare the initial (i) and the final (f) physical quantities of the gas to each other.

(The fill in the blank options are greater than, less than, or equal too).

The volume Vf is ... Vi.

The temperature Tf is ... Ti.

The internal energy Uf is ... Ui.

The entropy Sf is ... Si.

The pressure pf is ... pi.

Solutions

Expert Solution

Constant amount of ideal gas is kept inside a cylinder by a piston.

The piston is locked in to position, it is not allowed to move. The gas is then heated up.

Compare the initial (i) and the final (f) physical quantities of the gas to each other.

(i) The volume Vf is greater than Vi.

Explanation : Volume increases in an expansion process.

(ii) The temperature Tf is less than Ti.

Explanation : Temperature will be decreased. As no heat transfer takes place. So, the work of expansion will take place with the expense of internal energy and internal energy will decrease.

Hence, temperature will be decreased as the internal energy is the sole function of temperature.

(iii) The internal energy Uf is less than Ui.

Explanation : Internal energy will be decreased because the work of expansion will take place with expense of internal energy.

(iv) The entropy Sf is less than Si.

Explanation : Entropy will decrease as the volume increases in an expansion & the randomness or the collision rate will decrease.

(v) The pressure pf is less than pi.

Explanation : Pressure will be decreased as in the adiabatic process. It is inversely proportional to the volume.

In expansion, volume increases.


Related Solutions

1mol of an ideal gas is inside a cylinder with a piston under a pressure of...
1mol of an ideal gas is inside a cylinder with a piston under a pressure of 6 atm. When reducing the pressure to 2 atm at constant T = 300K: (a) Who is doing work, the piston or the gas? (b) What is the type of process for the maximum work? Find the maximum amount of work. (c) What is the type of process for the minimum work? Find the minimum amount of work.
A cylinder containing ideal gas is sealed by a piston that is above the gas. The...
A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 36.0 N, which can slide up or down in the cylinder without friction. The inner radius of the cylinder, and the radius of the piston, is 7.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of 30.0 cm, and, when...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is attached to an ideal spring. Outside the cylinder is a vacuum. The cross-sectional area of the piston is A = 2.50 × 10-3 m2. The initial pressure, volume, and temperature of the gas are, respectively, P0, V0 = 6.00 × 10-4 m3 and T0 = 273 K, and the spring is initially stretched by an amount x0 = 0.090 m with respect to its...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is attached to an ideal spring. Outside the cylinder is a vacuum. The cross-sectional area of the piston is A = 2.50 × 10-3 m2. The initial pressure, volume, and temperature of the gas are, respectively, P0, V0 = 6.00 × 10-4 m3 and T0 = 273 K, and the spring is initially stretched by an amount x0 = 0.092 m with respect to its...
n ideal gas is enclosed in a cylinder with a movable piston on top of it....
n ideal gas is enclosed in a cylinder with a movable piston on top of it. The piston has a mass of 8,000 g and an area of 5.00 cm2 and is free to slide up and down, keeping the pressure of the gas constant. (a) How much work is done on the gas as the temperature of 0.180 mol of the gas is raised from 30.0°C to 325°C?
A monatomic ideal gas is contanined in a cylinder with a moveable piston. Initially the volume...
A monatomic ideal gas is contanined in a cylinder with a moveable piston. Initially the volume of the cylinder is 0.25m^3. The gas is compressed under a constant pressure of 3 Pa until the volume has been halved. Then the volume is held constant while the pressure is doubled. Finally, the gas is allowed to expand isothermally back to its original condition. a)Sketch a P-V diagram for this process. Label the corners 1, 2, 3 with 1 being the beginning...
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows:...
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows: 1-2 isentropic compression from an initial temperature T1 5 208C with a compression ratio r 5 5 2-3 constant pressure heat addition 3-1 constant volume heat rejection The gas has constant specific heats with cv 5 0.7 kJ/kg·K and R 5 0.3 kJ/kg·K. (a) Sketch the P-v and T-s diagrams for the cycle. (b) Determine the heat and work interactions for each pro- cess,...
cooling a gas in a piston cylinder. if the boundary work of piston cylinder is compressed...
cooling a gas in a piston cylinder. if the boundary work of piston cylinder is compressed W = -10 kj determine if it is gained or lost by the gas.
Consider a container with a frictionless piston that contains a given amount of an ideal gas....
Consider a container with a frictionless piston that contains a given amount of an ideal gas. Let’s assume that initially the external pressure is 2.20 bar, which is the sum of a 1 bar atmospheric pressure and the pressure created by a very large number of very small pebbles that rest on top of the piston. The initial volume of gas is   0.300 L   and the initial temperature is 25°C. Now, you will increase the volume of the gas by...
Consider a container with a frictionless piston that contains a given amount of an ideal gas....
Consider a container with a frictionless piston that contains a given amount of an ideal gas. Assume the initial volume of the gas is 7 L, the initial temperature of the gas is 22.1 °C, and the system is in equilibrium with an external pressure of 1.1 bar. In step 1, the gas is cooled reversibly to a final temperature -29.9 °C. The external pressure remains constant at all times. In step 2 the gas is heated at constant volume...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT