Question

In: Chemistry

Analyze Carnot Cycle for ideal gases

Analyze Carnot Cycle for ideal gases

Solutions

Expert Solution


Related Solutions

Carnot cycle is called the ideal cycle. What is the process that is impossible in reality...
Carnot cycle is called the ideal cycle. What is the process that is impossible in reality in the Carnot cycle (among isothermal expansion, insulation expansion, isothermal compression, and insulation compression)?
A mole of an ideal gas goes through a cycle of a Carnot engine. Draw the...
A mole of an ideal gas goes through a cycle of a Carnot engine. Draw the pressure vs volume and entropy vs temperature planes for this cycle. What do the diagrams look like when the efficiency of the cycle is 50% and 99%. Then Calculate the work done per cycle by the gas and find the efficiency of the cycle.
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working...
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working substance (assume Cv = 2.5*R). The following are the steps of the cycle: Step I: reversible, isothermal expansion at 300.0 °C from 10.00 L to 16.00 L. Step II: reversible, a diabatic expansion until the temperature decreases to 50.0 °C. Step III: reversible, isothermal compression at 50.0 °C. Step IV: reversible, adiabatic compression back to the initial conditions. A. Calculate q, w, ΔU, ΔH,...
An ideal gas undergoes the following Carnot Cycle. It starts in a chamber of volume .0065...
An ideal gas undergoes the following Carnot Cycle. It starts in a chamber of volume .0065 m3 and temperature 345 Kelvin and pressure 630 kPa (state 1). It is allowed to expand isothermally to a volume of .01066 m3 (state 2) while heat is added to the gas.  Then it expands adiabatically to a volume of .01784 m3 (state 3). Then, it is compressed isothermally to a volume of Vf m3 (state 4) while heat is extracted from the gas.  Finally, it...
Analyze how how efficiency can be just a function of the two temperatures for Carnot Cycle...
Analyze how how efficiency can be just a function of the two temperatures for Carnot Cycle of ideal gas.
Suppose 0.2 moles of an ideal diatomic gas (Cv = 20.8 J/mol·K) undergoes a Carnot cycle...
Suppose 0.2 moles of an ideal diatomic gas (Cv = 20.8 J/mol·K) undergoes a Carnot cycle between temperatures of 227˚C and 27˚C. The initial volume of the gas is 8.31×10-4 m3 and during the high temperature isothermal expansion, the volume doubles.        a) Find the work done during the entire cycle       b) Find the efficiency of the cycle
Air within a piston-cylinder assembly execute an ideal Carnot power cycle within maximum and minimum temperatures...
Air within a piston-cylinder assembly execute an ideal Carnot power cycle within maximum and minimum temperatures of 600 K and 300 k, respectively. The heat added at the high temperature is 250 kJ/kg. The lowest pressure in the cycle is 75 kPa. Assuming the ideal gas model for the air (constant cv, cp, k, with the following properties: kair = 1.4, cv,air = 0.717 J/g.K, Mair = 28.97 g/mol, Universal Gas Constant 8.314 /( . ) _ R = J...
What is the importance of the carnot cycle?What is it for?
What is the importance of the carnot cycle?What is it for?
An engine operates in a Carnot cycle. At point A in the cycle, 2.34 mol of...
An engine operates in a Carnot cycle. At point A in the cycle, 2.34 mol of a monatomic ideal gas has a pressure of 1,400 kPa, a volume of 10.0 L, and a temperature of 720 K. The gas expands isothermally to point B and then expands adiabatically to point C, where its volume is 24.0 L. An isothermal compression brings it to point D, where its volume is 15.0 L. An adiabatic process returns the gas to point A....
A Carnot cycle consists of a cycle of 4 processes, in the order: 1) isothermal expansion...
A Carnot cycle consists of a cycle of 4 processes, in the order: 1) isothermal expansion at T(hot)=90oC, 2) adiabatic expansion to T(cold)=30oC, 3) isothermal contraction at T(cold), 4) adiabatic contraction to the original state. The gas in the system can be treated as a monotonic ideal gas Part A. After one complete cycle, what is the change in thermal energy of the gas in the system? Part B. After a complete cycle what is the change in entropy? (The...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT