In: Statistics and Probability
The length of a 95% confidence interval for mean Children is which of the following? (Because of potential roundoff, choose the closest.)
Person | Gender | Married | Age | Children | Salary | Spent |
1 | Male | Yes | 35 | 1 | 78900 | 1610 |
2 | Male | Yes | 53 | 1 | 114100 | 1960 |
3 | Male | Yes | 36 | 2 | 84800 | 1470 |
4 | Female | Yes | 51 | 2 | 87500 | 1210 |
5 | Male | Yes | 39 | 2 | 85600 | 1320 |
6 | Male | Yes | 66 | 3 | 112800 | 310 |
7 | Male | Yes | 48 | 1 | 87300 | 1070 |
8 | Male | Yes | 36 | 1 | 73800 | 2080 |
9 | Female | Yes | 47 | 3 | 68500 | 900 |
10 | Male | Yes | 50 | 1 | 110200 | 1950 |
11 | Male | No | 59 | 0 | 103700 | 480 |
12 | Male | Yes | 64 | 1 | 136100 | 1210 |
13 | Male | Yes | 39 | 0 | 82600 | 2590 |
14 | Male | Yes | 56 | 3 | 131700 | 1240 |
15 | Female | No | 32 | 1 | 83000 | 4070 |
16 | Male | Yes | 49 | 1 | 123100 | 1590 |
17 | Male | Yes | 59 | 3 | 120900 | 1440 |
18 | Male | Yes | 50 | 2 | 88500 | 330 |
19 | Female | Yes | 35 | 2 | 50300 | 960 |
20 | Male | Yes | 44 | 3 | 90800 | 1380 |
21 | Male | Yes | 54 | 0 | 83100 | 590 |
22 | Female | No | 34 | 1 | 50600 | 940 |
23 | Male | Yes | 53 | 0 | 125600 | 1570 |
24 | Male | Yes | 45 | 1 | 104500 | 1440 |
25 | Male | No | 47 | 1 | 86900 | 1040 |
26 | Male | Yes | 52 | 3 | 105900 | 470 |
27 | Male | Yes | 40 | 0 | 103600 | 1660 |
28 | Female | Yes | 55 | 3 | 98300 | 920 |
29 | Male | Yes | 54 | 2 | 109700 | 1740 |
30 | Male | No | 46 | 0 | 88800 | 1130 |
31 | Male | Yes | 67 | 0 | 141700 | 1560 |
32 | Female | No | 43 | 1 | 69200 | 590 |
33 | Male | Yes | 52 | 2 | 132700 | 2800 |
34 | Female | No | 41 | 0 | 56600 | 1730 |
35 | Male | Yes | 60 | 3 | 81000 | 180 |
36 | Male | Yes | 52 | 1 | 122700 | 3120 |
37 | Male | Yes | 34 | 2 | 82100 | 990 |
38 | Male | Yes | 47 | 1 | 95200 | 930 |
39 | Male | No | 47 | 1 | 118100 | 2460 |
40 | Female | No | 47 | 0 | 84600 | 1680 |
41 | Male | No | 41 | 0 | 79700 | 1110 |
42 | Male | Yes | 58 | 3 | 114600 | 1070 |
43 | Female | Yes | 46 | 2 | 68300 | 490 |
44 | Female | No | 51 | 0 | 89500 | 1730 |
45 | Female | Yes | 52 | 2 | 73400 | 440 |
46 | Male | Yes | 59 | 2 | 87400 | 420 |
47 | Male | No | 41 | 0 | 90700 | 1820 |
48 | Female | No | 43 | 1 | 89000 | 2170 |
49 | Female | Yes | 63 | 3 | 79900 | 550 |
50 | Male | No | 43 | 0 | 111200 | 3000 |
51 | Female | Yes | 57 | 1 | 97600 | 870 |
52 | Female | No | 42 | 2 | 67200 | 1050 |
53 | Female | No | 52 | 2 | 103300 | 1400 |
54 | Male | Yes | 36 | 2 | 75200 | 1080 |
55 | Male | Yes | 46 | 3 | 102200 | 1950 |
56 | Male | No | 33 | 1 | 100400 | 3300 |
57 | Male | Yes | 64 | 0 | 147000 | 2350 |
58 | Female | No | 30 | 0 | 51600 | 780 |
59 | Male | Yes | 39 | 2 | 99900 | 1920 |
60 | Male | No | 31 | 0 | 77700 | 1620 |
61 | Male | Yes | 40 | 1 | 116300 | 1370 |
62 | Male | No | 29 | 1 | 90100 | 3430 |
63 | Female | No | 59 | 1 | 93000 | 710 |
64 | Male | Yes | 52 | 0 | 83600 | 480 |
65 | Male | Yes | 47 | 3 | 111500 | 1060 |
66 | Female | Yes | 45 | 1 | 96600 | 2750 |
67 | Male | Yes | 46 | 4 | 67900 | 200 |
68 | Male | No | 56 | 0 | 114500 | 1630 |
69 | Male | Yes | 57 | 4 | 130800 | 1770 |
70 | Male | Yes | 52 | 4 | 104800 | 1220 |
71 | Female | No | 39 | 1 | 60600 | 1150 |
72 | Male | Yes | 58 | 3 | 127000 | 2020 |
73 | Male | Yes | 38 | 1 | 87000 | 2540 |
74 | Male | Yes | 55 | 2 | 124700 | 1940 |
75 | Female | No | 38 | 3 | 51600 | 640 |
76 | Male | Yes | 57 | 2 | 129400 | 2120 |
77 | Male | No | 29 | 0 | 76700 | 2620 |
78 | Male | Yes | 52 | 2 | 126500 | 3080 |
79 | Female | Yes | 58 | 3 | 85200 | 470 |
80 | Male | Yes | 61 | 2 | 93800 | 180 |
81 | Female | No | 57 | 2 | 81900 | 550 |
82 | Female | No | 33 | 0 | 52100 | 950 |
83 | Female | Yes | 32 | 4 | 50900 | 810 |
84 | Male | Yes | 62 | 2 | 113700 | 320 |
85 | Female | Yes | 63 | 3 | 87400 | 680 |
86 | Male | Yes | 44 | 3 | 96800 | 2160 |
87 | Male | Yes | 55 | 1 | 146100 | 2740 |
88 | Female | Yes | 41 | 1 | 61900 | 880 |
89 | Male | Yes | 44 | 1 | 101000 | 2290 |
90 | Female | Yes | 53 | 1 | 92900 | 1320 |
91 | Female | No | 38 | 0 | 64800 | 1480 |
92 | Male | Yes | 60 | 0 | 149100 | 1780 |
93 | Male | Yes | 49 | 4 | 78600 | 680 |
94 | Female | Yes | 45 | 2 | 80700 | 2030 |
95 | Male | Yes | 49 | 2 | 111400 | 1960 |
96 | Female | No | 52 | 2 | 95300 | 1420 |
97 | Male | Yes | 53 | 1 | 144500 | 3270 |
98 | Male | Yes | 51 | 0 | 115500 | 2100 |
99 | Male | Yes | 42 | 2 | 89900 | 1970 |
100 | Male | Yes | 44 | 3 | 98400 | 650 |
The goal is to evaluate the 95% confidence interval for the mean of the children. Hence, we are only concerned with the column named Children from the dataset.
To determine the confidence interval, we need to calculate the mean and the standard deviation. The formula for the mean and standard deviation are:
Here, x_i are the values mentioned in the column children and i ranges from 1-100 and it refers to the number of rows, and n = 100 is the total number of rows.
Substituting the values in the formula for mean, we get:
In order to compute the standard deviation, we first compute for each of the x_i values.
Children () |
|
1 | -0.33 |
2 | 0.67 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
2 | 0.67 |
3 | 1.67 |
1 | -0.33 |
0 | -1.33 |
1 | -0.33 |
1 | -0.33 |
3 | 1.67 |
0 | -1.33 |
0 | -1.33 |
1 | -0.33 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
0 | -1.33 |
1 | -0.33 |
0 | -1.33 |
2 | 0.67 |
1 | -0.33 |
3 | 1.67 |
1 | -0.33 |
2 | 0.67 |
3 | 1.67 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
2 | 0.67 |
2 | 0.67 |
2 | 0.67 |
5 | 3.67 |
2 | 0.67 |
1 | -0.33 |
3 | 1.67 |
1 | -0.33 |
2 | 0.67 |
0 | -1.33 |
2 | 0.67 |
0 | -1.33 |
3 | 1.67 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
3 | 1.67 |
1 | -0.33 |
1 | -0.33 |
2 | 0.67 |
0 | -1.33 |
3 | 1.67 |
0 | -1.33 |
0 | -1.33 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
1 | -0.33 |
0 | -1.33 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
2 | 0.67 |
3 | 1.67 |
0 | -1.33 |
1 | -0.33 |
3 | 1.67 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
1 | -0.33 |
2 | 0.67 |
1 | -0.33 |
0 | -1.33 |
2 | 0.67 |
2 | 0.67 |
0 | -1.33 |
1 | -0.33 |
2 | 0.67 |
1 | -0.33 |
3 | 1.67 |
2 | 0.67 |
2 | 0.67 |
0 | -1.33 |
3 | 1.67 |
0 | -1.33 |
3 | 1.67 |
2 | 0.67 |
0 | -1.33 |
2 | 0.67 |
Next, we square the values in the last column:
Children () | ||
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
0 | -1.33 | 1.7689 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
5 | 3.67 | 13.4689 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
3 | 1.67 | 2.7889 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
3 | 1.67 | 2.7889 |
0 | -1.33 | 1.7689 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
3 | 1.67 | 2.7889 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
3 | 1.67 | 2.7889 |
0 | -1.33 | 1.7689 |
3 | 1.67 | 2.7889 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
Summing the last column, we get:
Substituting this in the formula of standard deviation:
Now, the formula for the confidence interval is:
where z refers to the z-score that signifies the level of confidence. For 95% confidence interval, z = 1.96.
Substituting the values in the formula, we get:
Hence, the 95% Confidence Interval for the mean of Children is (1.13, 1.53).