In: Statistics and Probability
The length of a 95% confidence interval for mean Children is which of the following? (Because of potential roundoff, choose the closest.)
a.0.341
b. 0.369
c. 0.407
d. 0.467
| Person | Gender | Married | Age | Children | Salary | Spent | 
| 1 | Male | No | 28 | 1 | 48600 | 750 | 
| 2 | Male | Yes | 35 | 2 | 75500 | 1980 | 
| 3 | Female | No | 33 | 2 | 58900 | 1820 | 
| 4 | Female | Yes | 53 | 1 | 92200 | 990 | 
| 5 | Female | No | 49 | 1 | 100700 | 1990 | 
| 6 | Male | Yes | 57 | 1 | 128900 | 1900 | 
| 7 | Female | Yes | 53 | 1 | 84900 | 1000 | 
| 8 | Female | No | 34 | 2 | 62500 | 2470 | 
| 9 | Male | Yes | 55 | 3 | 142700 | 2400 | 
| 10 | Male | No | 33 | 1 | 92300 | 2460 | 
| 11 | Female | Yes | 46 | 0 | 63700 | 440 | 
| 12 | Male | Yes | 48 | 1 | 114600 | 2330 | 
| 13 | Male | No | 30 | 1 | 60900 | 1800 | 
| 14 | Male | Yes | 33 | 3 | 70300 | 2010 | 
| 15 | Male | Yes | 50 | 0 | 149300 | 1860 | 
| 16 | Female | No | 41 | 0 | 75100 | 2180 | 
| 17 | Male | No | 36 | 1 | 71500 | 1020 | 
| 18 | Male | Yes | 44 | 2 | 86900 | 850 | 
| 19 | Male | Yes | 48 | 1 | 124600 | 1500 | 
| 20 | Male | Yes | 41 | 1 | 92600 | 1220 | 
| 21 | Female | Yes | 45 | 0 | 69600 | 1730 | 
| 22 | Male | No | 45 | 0 | 114300 | 2540 | 
| 23 | Female | No | 39 | 1 | 64100 | 1390 | 
| 24 | Male | No | 36 | 0 | 107900 | 2460 | 
| 25 | Male | Yes | 42 | 2 | 68200 | 680 | 
| 26 | Male | No | 39 | 1 | 84700 | 1360 | 
| 27 | Female | No | 53 | 3 | 76000 | 1510 | 
| 28 | Male | No | 46 | 1 | 119600 | 2260 | 
| 29 | Male | Yes | 38 | 2 | 70400 | 730 | 
| 30 | Male | Yes | 46 | 3 | 118300 | 2050 | 
| 31 | Male | Yes | 53 | 1 | 126900 | 1510 | 
| 32 | Male | Yes | 51 | 1 | 121200 | 1270 | 
| 33 | Male | Yes | 56 | 0 | 154700 | 3670 | 
| 34 | Female | Yes | 52 | 2 | 64900 | 330 | 
| 35 | Male | No | 29 | 2 | 54300 | 1060 | 
| 36 | Female | No | 36 | 2 | 51500 | 1560 | 
| 37 | Female | Yes | 56 | 5 | 70200 | 320 | 
| 38 | Male | Yes | 46 | 2 | 122000 | 3200 | 
| 39 | Male | Yes | 52 | 1 | 90400 | 910 | 
| 40 | Male | No | 51 | 3 | 94700 | 880 | 
| 41 | Male | No | 31 | 1 | 92900 | 3950 | 
| 42 | Female | Yes | 58 | 2 | 125300 | 2530 | 
| 43 | Female | No | 44 | 0 | 60200 | 570 | 
| 44 | Male | Yes | 61 | 2 | 140500 | 1120 | 
| 45 | Male | Yes | 55 | 0 | 118600 | 800 | 
| 46 | Female | No | 40 | 3 | 57700 | 1130 | 
| 47 | Male | Yes | 36 | 2 | 60300 | 960 | 
| 48 | Male | No | 52 | 1 | 110100 | 1360 | 
| 49 | Male | Yes | 43 | 1 | 95200 | 1690 | 
| 50 | Male | Yes | 50 | 1 | 137600 | 4060 | 
| 51 | Female | No | 53 | 1 | 115300 | 2760 | 
| 52 | Female | Yes | 42 | 3 | 67800 | 770 | 
| 53 | Male | No | 46 | 1 | 108100 | 1700 | 
| 54 | Male | Yes | 43 | 1 | 93700 | 2250 | 
| 55 | Male | Yes | 56 | 2 | 138500 | 2680 | 
| 56 | Male | No | 44 | 0 | 127100 | 2510 | 
| 57 | Female | Yes | 55 | 3 | 75800 | 810 | 
| 58 | Male | No | 45 | 0 | 109900 | 1810 | 
| 59 | Male | No | 37 | 0 | 59600 | 520 | 
| 60 | Male | Yes | 54 | 1 | 127200 | 2560 | 
| 61 | Male | No | 63 | 1 | 129800 | 1480 | 
| 62 | Male | No | 45 | 0 | 100000 | 1860 | 
| 63 | Female | No | 49 | 1 | 79000 | 2070 | 
| 64 | Female | Yes | 49 | 1 | 82200 | 1130 | 
| 65 | Male | Yes | 39 | 1 | 81500 | 2170 | 
| 66 | Male | Yes | 48 | 0 | 85100 | 1040 | 
| 67 | Male | No | 37 | 1 | 78100 | 1130 | 
| 68 | Male | No | 35 | 0 | 98600 | 2760 | 
| 69 | Female | No | 38 | 2 | 64800 | 1050 | 
| 70 | Male | Yes | 44 | 1 | 111400 | 2370 | 
| 71 | Female | No | 47 | 1 | 81700 | 1520 | 
| 72 | Male | Yes | 69 | 2 | 135000 | 1010 | 
| 73 | Male | Yes | 48 | 3 | 98000 | 830 | 
| 74 | Male | Yes | 62 | 0 | 142300 | 1570 | 
| 75 | Male | Yes | 43 | 1 | 81400 | 930 | 
| 76 | Female | Yes | 52 | 3 | 69200 | 450 | 
| 77 | Male | Yes | 57 | 2 | 125900 | 2060 | 
| 78 | Male | Yes | 54 | 1 | 126000 | 910 | 
| 79 | Male | Yes | 45 | 1 | 101500 | 1160 | 
| 80 | Male | Yes | 39 | 0 | 98900 | 2830 | 
| 81 | Female | No | 38 | 1 | 74200 | 2680 | 
| 82 | Male | No | 47 | 2 | 86600 | 820 | 
| 83 | Male | Yes | 60 | 1 | 141800 | 1670 | 
| 84 | Male | No | 29 | 0 | 86000 | 3620 | 
| 85 | Male | Yes | 42 | 2 | 125500 | 3530 | 
| 86 | Female | No | 47 | 2 | 83600 | 1030 | 
| 87 | Male | Yes | 56 | 0 | 112800 | 1540 | 
| 88 | Male | No | 44 | 1 | 101000 | 1730 | 
| 89 | Male | No | 49 | 2 | 95000 | 960 | 
| 90 | Male | Yes | 63 | 1 | 133000 | 2080 | 
| 91 | Male | No | 37 | 3 | 77800 | 1460 | 
| 92 | Male | Yes | 42 | 2 | 84800 | 730 | 
| 93 | Male | No | 47 | 2 | 99500 | 1530 | 
| 94 | Female | No | 49 | 0 | 65200 | 980 | 
| 95 | Female | Yes | 45 | 3 | 60100 | 390 | 
| 96 | Male | No | 33 | 0 | 80400 | 1660 | 
| 97 | Male | Yes | 48 | 3 | 84300 | 880 | 
| 98 | Male | Yes | 39 | 2 | 93000 | 2030 | 
| 99 | Male | No | 36 | 0 | 97900 | 3190 | 
| 100 | Male | Yes | 49 | 2 | 58100 | 120 | 
Lenght of confidene interval of Mean = 2 * Margin of error
Margin of error = Z
/2
* (
/ 
)
Here confidence level = 95%
Significance level 
 = 1 - confidene level
= 1 - 0.95
= 0.05
/2
= 0.05/2
= 0.025
Z
/2
will be a z-score that has an area of 0.025 to its right which is
1.96
Number of values, n here = 100
Standard deviation of the children 
= 
[  
(xi - 
)2 ] / n
where 
 is the mean which is 1.33 here
= 
104.11 / 100
= 
1.0411
= 1.020343
So Lenght of 95% confidene interval of Mean = 2 * 1.96 *
(1.020343 / 
)
= 2 * 1.96 * (1.020343 / 10)
= 2 * 1.96 * 0.1020343
= 0.399974
= 0.40 rounded to 2 decimal places
which is approximately 0.407
So Answer is Option C