In: Statistics and Probability
The length of a 95% confidence interval for mean Children is which of the following? (Because of potential roundoff, choose the closest.)
data:
Person | Gender | Married | Age | Children | Salary | Spent |
1 | Male | No | 28 | 1 | 48600 | 750 |
2 | Male | Yes | 35 | 2 | 75500 | 1980 |
3 | Female | No | 33 | 2 | 58900 | 1820 |
4 | Female | Yes | 53 | 1 | 92200 | 990 |
5 | Female | No | 49 | 1 | 100700 | 1990 |
6 | Male | Yes | 57 | 1 | 128900 | 1900 |
7 | Female | Yes | 53 | 1 | 84900 | 1000 |
8 | Female | No | 34 | 2 | 62500 | 2470 |
9 | Male | Yes | 55 | 3 | 142700 | 2400 |
10 | Male | No | 33 | 1 | 92300 | 2460 |
11 | Female | Yes | 46 | 0 | 63700 | 440 |
12 | Male | Yes | 48 | 1 | 114600 | 2330 |
13 | Male | No | 30 | 1 | 60900 | 1800 |
14 | Male | Yes | 33 | 3 | 70300 | 2010 |
15 | Male | Yes | 50 | 0 | 149300 | 1860 |
16 | Female | No | 41 | 0 | 75100 | 2180 |
17 | Male | No | 36 | 1 | 71500 | 1020 |
18 | Male | Yes | 44 | 2 | 86900 | 850 |
19 | Male | Yes | 48 | 1 | 124600 | 1500 |
20 | Male | Yes | 41 | 1 | 92600 | 1220 |
21 | Female | Yes | 45 | 0 | 69600 | 1730 |
22 | Male | No | 45 | 0 | 114300 | 2540 |
23 | Female | No | 39 | 1 | 64100 | 1390 |
24 | Male | No | 36 | 0 | 107900 | 2460 |
25 | Male | Yes | 42 | 2 | 68200 | 680 |
26 | Male | No | 39 | 1 | 84700 | 1360 |
27 | Female | No | 53 | 3 | 76000 | 1510 |
28 | Male | No | 46 | 1 | 119600 | 2260 |
29 | Male | Yes | 38 | 2 | 70400 | 730 |
30 | Male | Yes | 46 | 3 | 118300 | 2050 |
31 | Male | Yes | 53 | 1 | 126900 | 1510 |
32 | Male | Yes | 51 | 1 | 121200 | 1270 |
33 | Male | Yes | 56 | 0 | 154700 | 3670 |
34 | Female | Yes | 52 | 2 | 64900 | 330 |
35 | Male | No | 29 | 2 | 54300 | 1060 |
36 | Female | No | 36 | 2 | 51500 | 1560 |
37 | Female | Yes | 56 | 5 | 70200 | 320 |
38 | Male | Yes | 46 | 2 | 122000 | 3200 |
39 | Male | Yes | 52 | 1 | 90400 | 910 |
40 | Male | No | 51 | 3 | 94700 | 880 |
41 | Male | No | 31 | 1 | 92900 | 3950 |
42 | Female | Yes | 58 | 2 | 125300 | 2530 |
43 | Female | No | 44 | 0 | 60200 | 570 |
44 | Male | Yes | 61 | 2 | 140500 | 1120 |
45 | Male | Yes | 55 | 0 | 118600 | 800 |
46 | Female | No | 40 | 3 | 57700 | 1130 |
47 | Male | Yes | 36 | 2 | 60300 | 960 |
48 | Male | No | 52 | 1 | 110100 | 1360 |
49 | Male | Yes | 43 | 1 | 95200 | 1690 |
50 | Male | Yes | 50 | 1 | 137600 | 4060 |
51 | Female | No | 53 | 1 | 115300 | 2760 |
52 | Female | Yes | 42 | 3 | 67800 | 770 |
53 | Male | No | 46 | 1 | 108100 | 1700 |
54 | Male | Yes | 43 | 1 | 93700 | 2250 |
55 | Male | Yes | 56 | 2 | 138500 | 2680 |
56 | Male | No | 44 | 0 | 127100 | 2510 |
57 | Female | Yes | 55 | 3 | 75800 | 810 |
58 | Male | No | 45 | 0 | 109900 | 1810 |
59 | Male | No | 37 | 0 | 59600 | 520 |
60 | Male | Yes | 54 | 1 | 127200 | 2560 |
61 | Male | No | 63 | 1 | 129800 | 1480 |
62 | Male | No | 45 | 0 | 100000 | 1860 |
63 | Female | No | 49 | 1 | 79000 | 2070 |
64 | Female | Yes | 49 | 1 | 82200 | 1130 |
65 | Male | Yes | 39 | 1 | 81500 | 2170 |
66 | Male | Yes | 48 | 0 | 85100 | 1040 |
67 | Male | No | 37 | 1 | 78100 | 1130 |
68 | Male | No | 35 | 0 | 98600 | 2760 |
69 | Female | No | 38 | 2 | 64800 | 1050 |
70 | Male | Yes | 44 | 1 | 111400 | 2370 |
71 | Female | No | 47 | 1 | 81700 | 1520 |
72 | Male | Yes | 69 | 2 | 135000 | 1010 |
73 | Male | Yes | 48 | 3 | 98000 | 830 |
74 | Male | Yes | 62 | 0 | 142300 | 1570 |
75 | Male | Yes | 43 | 1 | 81400 | 930 |
76 | Female | Yes | 52 | 3 | 69200 | 450 |
77 | Male | Yes | 57 | 2 | 125900 | 2060 |
78 | Male | Yes | 54 | 1 | 126000 | 910 |
79 | Male | Yes | 45 | 1 | 101500 | 1160 |
80 | Male | Yes | 39 | 0 | 98900 | 2830 |
81 | Female | No | 38 | 1 | 74200 | 2680 |
82 | Male | No | 47 | 2 | 86600 | 820 |
83 | Male | Yes | 60 | 1 | 141800 | 1670 |
84 | Male | No | 29 | 0 | 86000 | 3620 |
85 | Male | Yes | 42 | 2 | 125500 | 3530 |
86 | Female | No | 47 | 2 | 83600 | 1030 |
87 | Male | Yes | 56 | 0 | 112800 | 1540 |
88 | Male | No | 44 | 1 | 101000 | 1730 |
89 | Male | No | 49 | 2 | 95000 | 960 |
90 | Male | Yes | 63 | 1 | 133000 | 2080 |
91 | Male | No | 37 | 3 | 77800 | 1460 |
92 | Male | Yes | 42 | 2 | 84800 | 730 |
93 | Male | No | 47 | 2 | 99500 | 1530 |
94 | Female | No | 49 | 0 | 65200 | 980 |
95 | Female | Yes | 45 | 3 | 60100 | 390 |
96 | Male | No | 33 | 0 | 80400 | 1660 |
97 | Male | Yes | 48 | 3 | 84300 | 880 |
98 | Male | Yes | 39 | 2 | 93000 | 2030 |
99 | Male | No | 36 | 0 | 97900 | 3190 |
100 | Male | Yes | 49 | 2 | 58100 | 120 |
We are to determine the 95% confidence interval for the mean of Children using the table given.
For the same, we first evaluate the mean and standard deviation. The formula for mean and standard deviation are:
where x_i are the values of children in the dataset and i ranges from 1-100 and refers to the number of persons or the number of rows. n is the total number of rows and hence n = 100
Substituting the values in the formula for mean, we get:
Next, we are to compute the standard deviation. For the same, we first compute for each of the x_i values.
Children () |
|
1 | -0.33 |
2 | 0.67 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
2 | 0.67 |
3 | 1.67 |
1 | -0.33 |
0 | -1.33 |
1 | -0.33 |
1 | -0.33 |
3 | 1.67 |
0 | -1.33 |
0 | -1.33 |
1 | -0.33 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
0 | -1.33 |
1 | -0.33 |
0 | -1.33 |
2 | 0.67 |
1 | -0.33 |
3 | 1.67 |
1 | -0.33 |
2 | 0.67 |
3 | 1.67 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
2 | 0.67 |
2 | 0.67 |
2 | 0.67 |
5 | 3.67 |
2 | 0.67 |
1 | -0.33 |
3 | 1.67 |
1 | -0.33 |
2 | 0.67 |
0 | -1.33 |
2 | 0.67 |
0 | -1.33 |
3 | 1.67 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
3 | 1.67 |
1 | -0.33 |
1 | -0.33 |
2 | 0.67 |
0 | -1.33 |
3 | 1.67 |
0 | -1.33 |
0 | -1.33 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
1 | -0.33 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
1 | -0.33 |
0 | -1.33 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
2 | 0.67 |
3 | 1.67 |
0 | -1.33 |
1 | -0.33 |
3 | 1.67 |
2 | 0.67 |
1 | -0.33 |
1 | -0.33 |
0 | -1.33 |
1 | -0.33 |
2 | 0.67 |
1 | -0.33 |
0 | -1.33 |
2 | 0.67 |
2 | 0.67 |
0 | -1.33 |
1 | -0.33 |
2 | 0.67 |
1 | -0.33 |
3 | 1.67 |
2 | 0.67 |
2 | 0.67 |
0 | -1.33 |
3 | 1.67 |
0 | -1.33 |
3 | 1.67 |
2 | 0.67 |
0 | -1.33 |
2 | 0.67 |
Next, we square the values in the last column:
Children () | ||
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
0 | -1.33 | 1.7689 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
5 | 3.67 | 13.4689 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
3 | 1.67 | 2.7889 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
3 | 1.67 | 2.7889 |
0 | -1.33 | 1.7689 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
3 | 1.67 | 2.7889 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
1 | -0.33 | 0.1089 |
2 | 0.67 | 0.4489 |
1 | -0.33 | 0.1089 |
3 | 1.67 | 2.7889 |
2 | 0.67 | 0.4489 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
3 | 1.67 | 2.7889 |
0 | -1.33 | 1.7689 |
3 | 1.67 | 2.7889 |
2 | 0.67 | 0.4489 |
0 | -1.33 | 1.7689 |
2 | 0.67 | 0.4489 |
Summing the last column, we get:
Substituting this in the formula of standard deviation:
Now, the formula for the confidence interval is:
where z refers to the z-score that signifies the level of confidence. For 95% confidence interval, z = 1.96.
Substituting the values in the formula, we get:
Hence, the 95% Confidence Interval for the mean of Children is (1.13, 1.53).