Question

In: Math

A 95% confidence interval for a population mean was reported to be 148.79 to 155.21. If...

A 95% confidence interval for a population mean was reported to be 148.79 to 155.21. If σ = 15, what sample size was used in this study? (Round your answer to the nearest integer.)

Solutions

Expert Solution

Solution :

given that

Lower confidence interval = 148.79

Upper confidence interval = 155.21

  = (Lower confidence interval + Upper confidence interval ) / 2

= ( 148.79+155.21 ) / 2

Sample mean = =152

Margin of error = E = Upper confidence interval -

= 155.21-152

Margin of error = E  =3.21

standard deviation =   =15

Margin of error = E = 3.21

At 95% confidence level the z is ,

= 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

Z/2 = Z0.025 = 1.96

sample size = n = [Z/2* / E] 2

n = ( 1.96* 15 / 3.21 )2

n =84


Related Solutions

95% Confidence Interval: 86.19 ± 0.364 (85.8 to 86.6) "With 95% confidence the population mean is...
95% Confidence Interval: 86.19 ± 0.364 (85.8 to 86.6) "With 95% confidence the population mean is between 85.8 and 86.6, based on 33945 samples." Short Styles: 86.19 (95% CI 85.8 to 86.6) 86.19, 95% CI [85.8, 86.6] Margin of Error: 0.364 What is the impact of your margin of error on your findings? Explain. Is there enough evidence to reject the null hypotheses, explain in plain English?
step by step please. It is reported that a 95% confidence interval for the population average...
step by step please. It is reported that a 95% confidence interval for the population average of a variable X normally distributed is [37.1;46.9]. Consider that the population standard deviation is 12.5 and that the interval was obtained considering a population of infinite size. If P (Z> 1.96) = 0.025, what is the sample size used in this study?
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample A   1 1 2 4 5 7 8 8 Sample B   1 2 3 4 5 6 7 8
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean, based on the following sample size of n equals 7. ​1, 2,​ 3, 4, 5, 6, 7, and 23 In the given​ data, replace the value 23 with 7 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 95% confidence interval for the population​ mean, using...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean, based on the following sample size of n=6. ​1, 2,​ 3, 4, 5​,and 15 In the given​ data, replace the value 15 with 6 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 95% confidence interval for the population​ mean, using the formula or technology.
A 95% confidence interval estimate for a population mean is determined to be between 94.25 and...
A 95% confidence interval estimate for a population mean is determined to be between 94.25 and 98.33 years. If the confidence interval is increased to 98%, the interval would become narrower remain the same become wider
A 99% confidence interval for a population mean was reported to be 154 to 158. If...
A 99% confidence interval for a population mean was reported to be 154 to 158. If 15, what sample size was used in this study? (Round your answer to next whole number.)
Assuming the population is normally distributed, construct a 95% confidence interval for the population mean, based...
Assuming the population is normally distributed, construct a 95% confidence interval for the population mean, based on the following sample of size n = 7: 1 2 3 4 5 6 7 The mean is 4 and Standard Deviation 2.16 1. What is the lower boundary of the interval to two decimal places? 2. What is upper boundary of the interval to two decimal.
if you're constructing a 95% confidence interval for the MEAN of some population, and you collect...
if you're constructing a 95% confidence interval for the MEAN of some population, and you collect a sample of size 100 that has a sample mean of x-bar=30 with a population standard deviation of _=20, then how much would the margin of error of the confidence interval be? use 3 decimal places of accuracy
At a confidence level of 95% a confidence interval for a population proportion is determined to...
At a confidence level of 95% a confidence interval for a population proportion is determined to be 0.65 to 0.75. If the sample size had been larger and the estimate of the population proportion the same, this 95% confidence interval estimate as compared to the first interval estimate would be A. the same B. narrower C. wider
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT