In: Chemistry
use the steady state approximation
2N2O5 (g) → 4NO2 (g) + O2 (g)
The mechanism is based on:
N2O5 → NO2 + NO3 ka
NO2 + NO3 → N2O5 k'a
NO2 + NO3 → NO2 + O2 +NO kb
NO + N2O5 → NO2 + NO2 + NO2 kc
The mechanism is based on:
step 1 N2O5 → NO2 + NO3 ka
step 2 NO2 + NO3 → N2O5 k'a
step 3 NO2 + NO3 → NO2 + O2 +NO kb
step 4 NO + N2O5 → 3 NO2 kc
In these steps, NO and NO3 are intermediates.
For the other intermediate NO,
Formation rate of NO = kb [NO3] [NO2]
Consumption rate of NO = kc [NO] [N2O5]
A steady-state approach makes use of the assumption that the rate of production of an intermediate is equal to the rate of its consumption. Thus, we have
kb [NO3] [NO2] = kc [NO] [N2O5]
and solving for [NO] gives the result,
[NO] = kb [NO3] [NO2] / (kc [N2O5]) . . . (1)
For the other intermediate NO3,
Formation rate of NO3 = ka [N2O5]
Consumption rate of NO3 = k'a[NO3] [NO2] + kb[NO3] [NO2]
Applying the steady-state assumption gives:
ka [N2O5] = k'a[NO3] [NO2] + kb[NO3] [NO2]
Thus,
ka [N2O5]
[NO3] = -------------------------------- . . . . (2)
k'a[NO2] + kb[NO2]
Let's review the three equations (steps) in the mechanism:
Step 3 leads to the production of some products, and the active
species NO causes further reaction in step 4. This consideration
led to a rate expression from step 3 as:
d[O2] ----- = kb [NO3] [NO2] . . . . . (3) dt
Substituting (2) in (3) gives
ka [N2O5] rate = k[N2O5] = -------------------------------- [NO2] k'a[NO2] + kb[NO2]