Question

In: Chemistry

In the gas phase, N2O5 decomposes according to the following reaction 2N2O5 (g) --> 4NO2 (g)...

In the gas phase, N2O5 decomposes according to the following reaction

2N2O5 (g) --> 4NO2 (g) + O2 (g)

We put some N2O5 (g) in a container and it has a pressure of 0.154 atm. After the reaction proceeds for 103 seconds, the total pressure has increased to 0.260 atm. Assuming constant temperature and volume, the average rate of disappearance of the N2O5 (g) during this time interval is

answer is: 1.0 x 10^-3 atm/s

Please show work :D

Solutions

Expert Solution

In the gas phase, N2O5 decomposes according to the following reaction

2N2O5 (g) --> 4NO2 (g) + O2 (g)

We put some N2O5 (g) in a container and it has a pressure of 0.154 atm. After the reaction proceeds for 103 seconds, the total pressure has increased to 0.260 atm. Assuming constant temperature and volume, the average rate of disappearance of the N2O5 (g) during this time interval is

Solution

We will be calculating rate of disappearance of N2O5 during 103 seconds.

Average rate is given by = Change in pressure/Change in time

                = 0.260 atm-0.154 atm/103 sec

                = 0.106 atm/103 sec

                                             = 0.001 atm/sec

Answer is: 1.0 x 10^-3 atm/s


Related Solutions

The decomposition of N2O5 is described by the following equation. 2N2O5(g) → 4NO2(g) + O2(g) If...
The decomposition of N2O5 is described by the following equation. 2N2O5(g) → 4NO2(g) + O2(g) If the rate constant is 4.50 × 10−4 s−1, what is the half-life of this reaction? × 10 s in scientific notation The reaction 2A → B is second order with a rate constant of 51.0/M·min at 24°C. (a) Starting with [A]0 = 9.30 × 10−3 M, how long will it take for [A]t = 2.90 × 10−3 M? min (b) Calculate the half-life of...
  use the steady state approximation 2N2O5 (g) → 4NO2 (g) + O2 (g) The mechanism is based on:   N2O5 →...
  use the steady state approximation 2N2O5 (g) → 4NO2 (g) + O2 (g) The mechanism is based on:   N2O5 → NO2 + NO3    ka   NO2 + NO3 → N2O5    k'a   NO2 + NO3 → NO2 + O2 +NO   kb   NO + N2O5 → NO2 + NO2 + NO2   kc
consider the reaction 4NO2(g) + O2(g) ---> 2N2O5(g) At a particular time during the reaction, nitrogen...
consider the reaction 4NO2(g) + O2(g) ---> 2N2O5(g) At a particular time during the reaction, nitrogen dioxide is being consumed at the rate of 0.0013 M/s. At what rate is molecular oxygen being consumed?
The rate constant for the 1st order decomposition of N2O5 in the reaction 2N2O5 (g) ...
The rate constant for the 1st order decomposition of N2O5 in the reaction 2N2O5 (g)  4NO2 (g) + O2 (g) is k=3.38x 10-5 s-1 at 25oC. a. What is the half-life of N2O5? b. What will be the total pressure, initially 88.3 kPa for the pure N2O5 vapor, (1) 10s and (2) 10 min after initiation of the reaction? (Hint: partial pressure is proportional to concentration).
the first order rate constant for the decomposition of N2O5, 2N2O5(g)->4NO2(g)+O2(g) at 70C is 6.82x10^-3 s^-1....
the first order rate constant for the decomposition of N2O5, 2N2O5(g)->4NO2(g)+O2(g) at 70C is 6.82x10^-3 s^-1. suppose we start with 3.00x10^-2 mol of N2O5(g) in a volume of 2.3L A) how many moles of N2O5 will remain after 3.0 min? B) how many minutes will it take for the quantity of N2O5 to drop to 1.7x10^-2 mol? C) what is the half-life of N2O5 at 70C?
For 2N2O5(g) = 4NO2(g) + O2(g) 1.  Determine, by making the appropriate graphs, whether this decomposition reaction...
For 2N2O5(g) = 4NO2(g) + O2(g) 1.  Determine, by making the appropriate graphs, whether this decomposition reaction is zero, first, or second order with respect to N2O5 I found by makin the graph in excel that it was a first order reaction Now here are my questions 2. The stoichiometric coefficient for N205 in the reaction equation is 2. Depending on your answer to Problem 1, explain why the reaction order you obtained in Problem 1 is also 2, or explain...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.60×10−2 mol of N2O5(g) in a volume of 2.0 L . 1. How many moles of N2O5 will remain after 4.0 min ? 2. How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ? 3. What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.80×10−2 mol of N2O5(g) in a volume of 2.2 L . How many moles of N2O5 will remain after 6.0 min ? How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ? What is the half-life of N2O5 at 70∘C?
The decomposition of n2o5 is a first order reaction. N2o5 decomposes to yield no2 and o2....
The decomposition of n2o5 is a first order reaction. N2o5 decomposes to yield no2 and o2. At 48deg C the rate constant for the reaction is 1.2x10^-5s^-1. Calculate the partial pressure of no2 produced from 1.0L of 0.700M n2o5 solution at 48deg C over a period of 22 hours if the gas is collected in a 10.0L container. Show work please.
The following reaction is first order in N2O5: N2O5(g)→NO3(g)+NO2(g) The rate constant for the reaction at...
The following reaction is first order in N2O5: N2O5(g)→NO3(g)+NO2(g) The rate constant for the reaction at a certain temperature is 0.053/s. A. Calculate the rate of the reaction when [N2O5]= 5.9×10−2 M. B. What would the rate of the reaction be at the same concentration as in Part A if the reaction were second order? (Assume the same numerical value for the rate constant with the appropriate units.) C. What would the rate of the reaction be at the same...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT