Question

In: Statistics and Probability

The following hypotheses were tested H0: population mean= 0 Ha: population mean > 0 And a...

The following hypotheses were tested

H0: population mean= 0

Ha: population mean > 0

And a P value of 0.023 is obtained. What can be concluded?

a. the chance that the alternative hypothesis is true is 0.023

b. the chance that the null hypothesis is true is 0.023

c. the chance of obtaining a value of the test statistic as or more extreme than the value actually obtained if the null is true is 0.023

d. the chance of obtaining a value of the test statistic that is >0 is only 0.023 if the null is true

e. the chance that the null hypothesis is true is 0.977

Which of the following statements would provide strong evidence against the null hypothesis?

a. a very large p value

b. a very small p value

c. a large sample size

d. a small sample size

e. a negative value for the z test

Solutions

Expert Solution

Solution:

Given ,

The null and alternative hypothesis are respectivelly ,

H0: population mean= 0

Ha: population mean > 0

P value of this test is 0.023

What can be concluded?

the chance of obtaining a value of the test statistic as or more extreme than the value actually obtained if the null is true is 0.023

Option c is correct.

Which of the following statements would provide strong evidence against the null hypothesis?

a very small p value

Option b is correct.

{When p value is less than the significance level , we reject the null hypothesis. , otherwise we fail to reject the null hypothesis}


Related Solutions

Consider the following hypotheses: H0: μ = 420 HA: μ ≠ 420    The population is...
Consider the following hypotheses: H0: μ = 420 HA: μ ≠ 420    The population is normally distributed with a population standard deviation of 72. Use Table 1.     a. Use a 1% level of significance to determine the critical value(s) of the test. (Round your answer to 2 decimal places.)       Critical value(s) ±        b-1. Calculate the value of the test statistic with x−x− = 430 and n = 90. (Round your answer to 2 decimal places.)    ...
Consider the following competing hypotheses: H0: ρxy = 0 HA: ρxy ≠ 0 The sample consists...
Consider the following competing hypotheses: H0: ρxy = 0 HA: ρxy ≠ 0 The sample consists of 16 observations and the sample correlation coefficient is 0.27. [You may find it useful to reference the t table.] a-1. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final answer to 3 decimal places.)
Consider the following hypotheses: H0: μ = 250 HA: μ ≠ 250 The population is normally...
Consider the following hypotheses: H0: μ = 250 HA: μ ≠ 250 The population is normally distributed with a population standard deviation of 62. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 277 and n = 75. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 360 HA: μ ≠ 360 The population is normally...
Consider the following hypotheses: H0: μ = 360 HA: μ ≠ 360 The population is normally distributed with a population standard deviation of 73. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 389 and n = 80. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 10%...
Consider the following hypotheses: H0: μ = 4,500 HA: μ ≠ 4,500 The population is normally...
Consider the following hypotheses: H0: μ = 4,500 HA: μ ≠ 4,500 The population is normally distributed with a population standard deviation of 700. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally distributed with a population standard deviation of 440. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 77. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x− = 390 and n = 45. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance...
Consider the following hypotheses: H0: μ = 450 HA: μ ≠ 450 The population is normally...
Consider the following hypotheses: H0: μ = 450 HA: μ ≠ 450 The population is normally distributed with a population standard deviation of 48. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 476 and n = 75. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 63. a-1. Calculate the value of the test statistic with x−x− = 393 and n = 95. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance level? a-3. Interpret the results at αα = 0.10. b-1. Calculate the value of the...
Consider the following hypotheses: H0: μ = 290 HA: μ ≠ 290 The population is normally...
Consider the following hypotheses: H0: μ = 290 HA: μ ≠ 290 The population is normally distributed with a population standard deviation of 79. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 303 and n = 50. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT