Question

In: Chemistry

How much energy do 4,000,300,084 photons have in total if they have a wavelength of 600...

How much energy do 4,000,300,084 photons have in total if they have a wavelength of 600 nanometers? Have your answer in units of nanojoules.

Solutions

Expert Solution

we know that

energy of one photon = hc / λ

where, h = planck constant = 6.626 × 10-34 m2 kg / s

c = speed of light = 3 × 108 m/s

  λ = wavelength = 600 nm

So,

energy of one photon of given wavelength

= (6.626 × 10-34 m2 kg / s × 3 × 108 m/s) / 600 × 10-9 m

energy of one photon of given wavelength = 3.3 × 10-19 joule

now, we have given

nmber of photons are = 4,000,300,084 photons

therefore,

energy of 4,000,300,084 photons = 4,000,300,084 photons × energy of one photon

energy of 4,000,300,084 photons = 4,000,300,084 ×   3.3 × 10-19

energy of 4,000,300,084 photons = 1.3201 × 10-9 joule

hey, if you find nay doubt please ask and please give a thumbs up. thanks


Related Solutions

Calculate the wavelength ?λ and the frequency ?f of the photons that have an energy of...
Calculate the wavelength ?λ and the frequency ?f of the photons that have an energy of ?photon=2.32×10−18 J.Ephoton=2.32×10−18 J. Use ?=3.00×108 m/sc=3.00×108 m/s for the speed of light in a vacuum. ?=λ= mm ?=f= HzHz Calculate the wavelength and the frequency of the photons that have an energy of ?photon=901 MeV.Ephoton=901 MeV. ?=λ= mm ?=f= HzHz Calculate the wavelength and the frequency of the photons that have an energy of ?photon=5.61 keV.Ephoton=5.61 keV. ?=λ= mm ?=f= HzHz Calculate the wavelength...
The energy of light photons varies with wavelength. Calculate the energy per mole of photons for...
The energy of light photons varies with wavelength. Calculate the energy per mole of photons for each of the following colors of visible light. Red Light, λ = 697 nm Green Light, λ = 549 nm Blue Light, λ = 403 nm answer in kJ/mol
What is the energy per mole of photons of light with a wavelength of 812.4 nm?...
What is the energy per mole of photons of light with a wavelength of 812.4 nm? a.) 2.45 x 10^-19 KJ/mol b.) 1.47 x 10^2 KJ/mol c.)4.89 x 10^14 KJ/mol d.) 2.22 x 10^35 KJ/mol e.) 3.69 x10^14 KJ/mol (please show work)
4. Find the wavelength of radiation whose photons have energy equal to 1.4 eV. i. 0.34...
4. Find the wavelength of radiation whose photons have energy equal to 1.4 eV. i. 0.34 ?m ii. 0.89 ?m iii. 1.2 ?m iv. 1.7 ?m 5. Explain (in words, not equations) what the Betz limit is and how it is derived.
6.a) In terms of wavelength, frequency and energy compare the two photons with wavelengths of 900...
6.a) In terms of wavelength, frequency and energy compare the two photons with wavelengths of 900 nm and 780 nm. b) What are the emission spectra of an element? c) How are the emission spectra of an element produced? d) How did Bohr (quantum theory) explain the emission (line) spectra of hydrogen?
What is the energy, in kJ/mole, associated with photons having the following wavelength A. 280nm B....
What is the energy, in kJ/mole, associated with photons having the following wavelength A. 280nm B. 400nm C. 750nm D. 4000nm What is the significane of each of these wavelengths
1. A) Calculate the wavelength of maximum energy emission and the total energy emitted each of...
1. A) Calculate the wavelength of maximum energy emission and the total energy emitted each of the following objects: a) A tree, with a surface temperature of 18 oC and an emissivity 0.98 (2); b) A lake, with a surface temperature of 10 oC and an emissivity of 0.98(2). B) Calculate the surface temperature of the following objects with a wavelength of maximum energy emission of: a) 10 micrometers(1); b) 500 nanometers (1). C) Calculate the surface temperature of the...
Carbon absorbs energy at a wavelength of 150. nm. The total amount of energy emitted by...
Carbon absorbs energy at a wavelength of 150. nm. The total amount of energy emitted by a carbon sample is 1.00 x 10^5 J. Calculate the number of carbon atoms present in the sample, assuming that each atom emits one photon.
suppose that the microwave radiation has a wavelength of 11.6 cm . How many photons are...
suppose that the microwave radiation has a wavelength of 11.6 cm . How many photons are required to heat 245 ml of coffee from 25.0 °C to 62°C? Assume that the coffee has the same density 0.997 g/mL and specific heat capacity of 4.184 J/ (g•K), as water over this temperature range.
Suppose that the microwave radiation has a wavelength of 12 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 12 cm . How many photons are required to heat 305 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT