Question

In: Statistics and Probability

Consider the following hypotheses: H0: μ = 290 HA: μ ≠ 290 The population is normally...

Consider the following hypotheses:

H0: μ = 290
HA: μ ≠ 290

The population is normally distributed with a population standard deviation of 79. (You may find it useful to reference the appropriate table: z table or t table)

a-1. Calculate the value of the test statistic with x−x− = 303 and n = 50. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)
  


a-2. What is the conclusion at the 5% significance level?
  

Reject H0 since the p-value is less than the significance level.

Reject H0 since the p-value is greater than the significance level.

Do not reject H0 since the p-value is less than the significance level.

Do not reject H0 since the p-value is greater than the significance level.



a-3. Interpret the results at αα = 0.05.

We conclude that the population mean differs from 290.

We cannot conclude that the population mean differs from 290.

We conclude that the sample mean differs from 290.

We cannot conclude that the sample mean differs from 290.



b-1. Calculate the value of the test statistic with x−x− = 274 and n = 50. (Negative value should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)
  


b-2. What is the conclusion at the 1% significance level?
  

Do not reject H0 since the p-value is less than the significance level.

Do not reject H0 since the p-value is greater than the significance level.

Reject H0 since the p-value is less than the significance level.

Reject H0 since the p-value is greater than the significance level.



b-3. Interpret the results at αα = 0.01.


We cannot conclude that the population mean differs from 290.

We conclude that the population mean differs from 290.

We cannot conclude that the sample mean differs from 290.

We conclude that the sample mean differs from 290.

Solutions

Expert Solution

Solution :

= 290

=303

=79

n = 50

This is the two tailed test .

The null and alternative hypothesis is ,

H0 :    = 290

Ha :     290

Test statistic = z

= ( - ) / / n

= (303-290) /79 / 50

= 0.37

Test statistic = z = 0.37

P(z > 0.37 ) = 1 - P(z < 0.37 ) =1 - 0.6443

P-value = 2 * 0.3557 =0.7114

a ) = 0.05  

P-value >

0.7114 > 0.05

Do not reject H0 since the p-value is greater than the significance level.

We cannot conclude that the population mean differs from 290.

b ) = 0.01  

P-value >

0.7114 > 0.01

Do not reject H0 since the p-value is greater than the significance level.

We cannot conclude that the population mean differs from 290


Related Solutions

Consider the following hypotheses: H0: μ = 250 HA: μ ≠ 250 The population is normally...
Consider the following hypotheses: H0: μ = 250 HA: μ ≠ 250 The population is normally distributed with a population standard deviation of 62. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 277 and n = 75. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 360 HA: μ ≠ 360 The population is normally...
Consider the following hypotheses: H0: μ = 360 HA: μ ≠ 360 The population is normally distributed with a population standard deviation of 73. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 389 and n = 80. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 10%...
Consider the following hypotheses: H0: μ = 4,500 HA: μ ≠ 4,500 The population is normally...
Consider the following hypotheses: H0: μ = 4,500 HA: μ ≠ 4,500 The population is normally distributed with a population standard deviation of 700. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally distributed with a population standard deviation of 440. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 77. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x− = 390 and n = 45. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance...
Consider the following hypotheses: H0: μ = 450 HA: μ ≠ 450 The population is normally...
Consider the following hypotheses: H0: μ = 450 HA: μ ≠ 450 The population is normally distributed with a population standard deviation of 48. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 476 and n = 75. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 63. a-1. Calculate the value of the test statistic with x−x− = 393 and n = 95. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance level? a-3. Interpret the results at αα = 0.10. b-1. Calculate the value of the...
Consider the following hypotheses: H0: μ = 30 HA: μ ≠ 30 The population is normally...
Consider the following hypotheses: H0: μ = 30 HA: μ ≠ 30 The population is normally distributed. A sample produces the following observations: 33 26 29 35 31 35 31 At the 10% significance level, what is the conclusion? a) Reject H0 since the p-value is greater than α. b) Reject H0 since the p-value is smaller than α. c) Do not reject H0 since the p-value is greater than α. d) Do not reject H0 since the p-value is...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 77. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 390 and n = 45. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance...
Consider the following hypotheses: H0: μ = 3,900 HA: μ ≠ 3,900 The population is normally...
Consider the following hypotheses: H0: μ = 3,900 HA: μ ≠ 3,900 The population is normally distributed with a population standard deviation of 510. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT