Question

In: Statistics and Probability

Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally...

Consider the following hypotheses:

H0: μ = 1,800
HA: μ ≠ 1,800

The population is normally distributed with a population standard deviation of 440. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places. Round "test statistic" values to 2 decimal places and "p-value" to 4 decimal places.)

Test statistic p-value
a. x−x− = 1,850; n = 110 (Click to select)  Reject H0  Do not reject H0
b. x−x− = 1,850; n = 280 (Click to select)  Reject H0  Do not reject H0
c. x−x− = 1,650; n = 32 (Click to select)  Reject H0  Do not reject H0
d. x−x− = 1,700; n = 32 (Click to select)  Reject H0  Do not reject H0

Solutions

Expert Solution

Solution :

= 1800

= 440

This is the two tailed test .

The null and alternative hypothesis is ,

H0 :   = 1800

Ha :     1800

= 0.05

Test statistic z p-value
a x -x=1850,n =110

Test statistic = z

= ( - ) / / n

= (1850-1800) /440 / 110

=1.19

0.2333 Do not reject H0
b x-x =1850 ,n =280

= ( - ) / / n

= (1850-1800) /440 / 280

=1.90

0.0572 Reject H0
c x-x =1650, n =32

= ( - ) / / n

= (1650-1800) /440 / 32

= -1.93

0.0538 Reject H0
d x-x =1700 , n= 32

= ( - ) / / n

= (1700-1800) /440 / 32

= -1.29

0.1986 Do not reject H0

Related Solutions

Consider the following hypotheses: H0: μ = 250 HA: μ ≠ 250 The population is normally...
Consider the following hypotheses: H0: μ = 250 HA: μ ≠ 250 The population is normally distributed with a population standard deviation of 62. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 277 and n = 75. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 360 HA: μ ≠ 360 The population is normally...
Consider the following hypotheses: H0: μ = 360 HA: μ ≠ 360 The population is normally distributed with a population standard deviation of 73. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 389 and n = 80. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 10%...
Consider the following hypotheses: H0: μ = 4,500 HA: μ ≠ 4,500 The population is normally...
Consider the following hypotheses: H0: μ = 4,500 HA: μ ≠ 4,500 The population is normally distributed with a population standard deviation of 700. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 77. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x− = 390 and n = 45. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance...
Consider the following hypotheses: H0: μ = 450 HA: μ ≠ 450 The population is normally...
Consider the following hypotheses: H0: μ = 450 HA: μ ≠ 450 The population is normally distributed with a population standard deviation of 48. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 476 and n = 75. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 63. a-1. Calculate the value of the test statistic with x−x− = 393 and n = 95. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance level? a-3. Interpret the results at αα = 0.10. b-1. Calculate the value of the...
Consider the following hypotheses: H0: μ = 290 HA: μ ≠ 290 The population is normally...
Consider the following hypotheses: H0: μ = 290 HA: μ ≠ 290 The population is normally distributed with a population standard deviation of 79. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 303 and n = 50. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 30 HA: μ ≠ 30 The population is normally...
Consider the following hypotheses: H0: μ = 30 HA: μ ≠ 30 The population is normally distributed. A sample produces the following observations: 33 26 29 35 31 35 31 At the 10% significance level, what is the conclusion? a) Reject H0 since the p-value is greater than α. b) Reject H0 since the p-value is smaller than α. c) Do not reject H0 since the p-value is greater than α. d) Do not reject H0 since the p-value is...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 77. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 390 and n = 45. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance...
Consider the following hypotheses: H0: μ = 3,900 HA: μ ≠ 3,900 The population is normally...
Consider the following hypotheses: H0: μ = 3,900 HA: μ ≠ 3,900 The population is normally distributed with a population standard deviation of 510. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT