Question

In: Mechanical Engineering

4. Find the wavelength of radiation whose photons have energy equal to 1.4 eV. i. 0.34...

4. Find the wavelength of radiation whose photons have energy equal to 1.4 eV.
i. 0.34 ?m
ii. 0.89 ?m
iii. 1.2 ?m
iv. 1.7 ?m


5. Explain (in words, not equations) what the Betz limit is and how it is derived.

Solutions

Expert Solution


Related Solutions

Calculate the wavelength ?λ and the frequency ?f of the photons that have an energy of...
Calculate the wavelength ?λ and the frequency ?f of the photons that have an energy of ?photon=2.32×10−18 J.Ephoton=2.32×10−18 J. Use ?=3.00×108 m/sc=3.00×108 m/s for the speed of light in a vacuum. ?=λ= mm ?=f= HzHz Calculate the wavelength and the frequency of the photons that have an energy of ?photon=901 MeV.Ephoton=901 MeV. ?=λ= mm ?=f= HzHz Calculate the wavelength and the frequency of the photons that have an energy of ?photon=5.61 keV.Ephoton=5.61 keV. ?=λ= mm ?=f= HzHz Calculate the wavelength...
The energy of light photons varies with wavelength. Calculate the energy per mole of photons for...
The energy of light photons varies with wavelength. Calculate the energy per mole of photons for each of the following colors of visible light. Red Light, λ = 697 nm Green Light, λ = 549 nm Blue Light, λ = 403 nm answer in kJ/mol
Basics of photons and waves energy , radiation and frequency.
Basics of photons and waves energy , radiation and frequency.
1)Calculate the wavelength (in nm) of a photon whose energy is 2 eV. 2)Also calculate the...
1)Calculate the wavelength (in nm) of a photon whose energy is 2 eV. 2)Also calculate the wavelength (in nm) of a free electron moving with a kinetic energy of 2 eV.
How much energy do 4,000,300,084 photons have in total if they have a wavelength of 600...
How much energy do 4,000,300,084 photons have in total if they have a wavelength of 600 nanometers? Have your answer in units of nanojoules.
suppose that the microwave radiation has a wavelength of 11.6 cm . How many photons are...
suppose that the microwave radiation has a wavelength of 11.6 cm . How many photons are required to heat 245 ml of coffee from 25.0 °C to 62°C? Assume that the coffee has the same density 0.997 g/mL and specific heat capacity of 4.184 J/ (g•K), as water over this temperature range.
Suppose that the microwave radiation has a wavelength of 12 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 12 cm . How many photons are required to heat 305 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range.
Suppose that the microwave radiation has a wavelength of 10.8 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 10.8 cm . How many photons are required to heat 295 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range. Express the number of photons numerically.
Suppose that the microwave radiation has a wavelength of 12.4 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 12.4 cm . How many photons are required to heat 205 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range.
Suppose that the microwave radiation has a wavelength of 12.4 cm . How many photons are...
Suppose that the microwave radiation has a wavelength of 12.4 cm . How many photons are required to heat 285 mL of coffee from 25.0 ∘C to 62.0 ∘C? Assume that the coffee has the same density, 0.997 g/mL , and specific heat capacity, 4.184 J/(g⋅K) , as water over this temperature range. Express the number of photons numerically.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT