Question

In: Chemistry

Oxalic acid , HOOCCOOH, is a diprotic acid with Ka1= 0.056 and Ka2=1.5x10-4. Determine the equilibrium...

Oxalic acid , HOOCCOOH, is a diprotic acid with Ka1= 0.056 and Ka2=1.5x10-4. Determine the equilibrium [HOOCCOOH] in a solution with an initial concentration of 0.116 M oxalic acid

. HOOCCOOH = HOOCCOO- + H+

HOOCCOO- = -OOCCOO- + H+

Solutions

Expert Solution

                 HOOCCOOH ------------>HOOCCOO- + H+

I                  0.116                                  0                    0      

C                -x                                        +x                 +x

E              0.116-x                                   +x                +x

            Ka1   = [HOOCCOO-][H+]/ [HOOCCOOH]

           0.056   = x*x/(0.116-x)

          0.056*(0.116-x) = x^2

             x   = 0.057

        [HOOCCOOH]   = 0.116-x   = 0.116-0.057   = 0.059 M


Related Solutions

Oxalic acid , HOOCCOOH (aq) , is a diprotic acid with Ka1= 0.056 and Ka2=1.5x10-4. Determine...
Oxalic acid , HOOCCOOH (aq) , is a diprotic acid with Ka1= 0.056 and Ka2=1.5x10-4. Determine the pH of a 0.12 M oxalic acid solution. HOOCCOOH(aq) = HOOCCOO-(aq) + H+(aq) HOOCCOO-(aq) = -OOCCOO-(aq) + H+(aq)
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 2.40× 10–4 and Ka2 = 2.70× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. .185M solution of NaHA .185M solution of Na2A
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.63× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.63× 10–4 and Ka2 = 4.71× 10–11. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.184 M solution of H2A (b) a 0.184 M solution of NaHA (c) a 0.184 M solution of Na2A
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.66× 10–4 and Ka2 = 4.99× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.121 M solution of H2A pH = ? [H2A]=? [HA-]=? [A2-]=? (b) a 0.121 M solution of NaHA pH = ? [H2A]=? [HA-]=? [A2-]=? (c) a 0.121 M solution of Na2A pH = ? [H2A]=? [HA-]=? [A2-]=?
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.94× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.94× 10–4 and Ka2 = 2.17× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.147 M solution of H2A (b) a 0.147 M solution of NaHA
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.61× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.61× 10–4 and Ka2 = 4.02× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.124 M solution of H2A pH [H2A] [HA-] [A2-] (b) a 0.124 M solution of NaHA pH [H2A] [HA-] [A2-] (c) a 0.124 M solution of Na2A pH [H2A] [HA-] [A2-]
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.56× 10–4 and Ka2 =...
A diprotic acid, H2A, has acid dissociation constants of Ka1 = 1.56× 10–4 and Ka2 = 2.28× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below. (a) a 0.203 M solution of H2A (b) a 0.203 M solution of NaHA (c) a 0.203 M solution of Na2A
Given a diprotic acid, H2A, with two ionization constants of Ka1 = 4.08× 10–4 and Ka2...
Given a diprotic acid, H2A, with two ionization constants of Ka1 = 4.08× 10–4 and Ka2 = 2.89× 10–12, calculate the pH and molar concentrations of H2A, HA–, and A2– for each of the solutions below. (a) a 0.167 M solution of H2A (b) a 0.167 M solution of NaHA (c) a 0.167 M solution of Na2A
Glutamine (HQ) is a diprotic amino acid with Ka1=6.5x10^-3 and Ka2=1.00x10^-9. Determine the pH of the...
Glutamine (HQ) is a diprotic amino acid with Ka1=6.5x10^-3 and Ka2=1.00x10^-9. Determine the pH of the following solutions. A) 0.298 M glutamine hydrochloride (H2Q+ Cl-) B) 0.298 M glutamine (HQ) C) 0.298 M sodium glutaminate (Na+Q-)
For the diprotic weak acid H2A, Ka1 = 3.2 × 10^-6 and Ka2 = 8.0 ×...
For the diprotic weak acid H2A, Ka1 = 3.2 × 10^-6 and Ka2 = 8.0 × 10^-9. What is the pH of a 0.0600 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution? Please show work.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT