Question

In: Advanced Math

Exercise Minimize            Z = X1 - 2X2 Subject to            X1 - 2X2 ≥ 4            &

Exercise

Minimize            Z = X1 - 2X2

Subject to            X1 - 2X2 ≥ 4

                            X1 + X2 ≤ 8

                           X1, X2 ≥ 0

Solutions

Expert Solution


Related Solutions

(Operation Research II Industrial Engineering) Consider the following LP: Minimize z = x1 + 2x2 Subject...
(Operation Research II Industrial Engineering) Consider the following LP: Minimize z = x1 + 2x2 Subject to x1 + x2 >= 1 -x1 + 2x2 <= 3 x2 <= 5 x1,x2 >= 0 (a) Convert the LP given above to the standard form. Determine all the basic feasible solutions (bfs) of the problem. Give the values of both basic and nonbasic variables in each bfs. (b) Identify the adjacent basic feasible solutions of each extreme point of the feasible region....
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1...
Exercise Solve the following linear programs graphically. Maximize            Z = X1 + 2X2 Subject to            2X1 + X2 ≥ 12                             X1 + X2 ≥ 5                            -X1 + 3X2 ≤ 3                            6X1 – X2 ≥ 12                            X1, X2 ≥ 0
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1...
MAXIMIZATION BY THE SIMPLEX METHOD Maximize z = x1 + 2x2 + x3 subject to x1 + x2 ≤ 3 x2 + x3 ≤ 4 x1 + x3 ≤ 5 x1, x2, x3 ≥0
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2...
Consider the following linear program:   maximize z = x1 + 4x2 subject to: x1 + 2x2 <= 13 x1 - x2 <= 8 - x1 + x2 <= 2 -3 <= x1 <= 8 -5 <= x2 <= 4 Starting with x1 and x2 nonbasic at their lower bounds, perform ONE iteration of the Bounded Variables Revised Simplex Method. (Tableau or matrix form is acceptable). Show your work. Clearly identify the entering and leaving variables. After the pivot, identify the...
Solve the following linear programs graphically. Minimize            Z = 4X1 - X2 Subject to            X1 +...
Solve the following linear programs graphically. Minimize            Z = 4X1 - X2 Subject to            X1 + X2 ≤ 6                             X1 - X2 ≥ 3                            -X1 + 2X2 ≥ 2                            X1, X2 ≥ 0
maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6               &nb
maximize z = 2x1+3x2 subject to   x1+3X2 6                   3x1+2x2 6                  x1,x2 This can be simply done by drawing all the lines in the x-y plane and looking at the corner points. Our points of interest are the corner points and we will check where we get the maximum value for our objective function by putting all the four corner points. (2,0), (0,2), (0,0), (6/7, 12/7) We get maximum at = (6/7, 12/7) and the maximum value is =...
Find dual from primal conversion MIN Z = x1 - 2x2 subject to 4x1 - x2 >= 8 2x1 + x2 >= 10 -x1 + x2 <= 7 and x1,x2 >= 0
Find dual from primal conversion MIN Z = x1 - 2x2 subject to 4x1 - x2 >= 8 2x1 + x2 >= 10 -x1 + x2 = 0
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Indicate clearly the optimal basic and nonbasic variables and their values and write the reduced cost of each optimal nonbasic variable.
MAX Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 <= 8 2x2...
MAX Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 <= 8 2x2 + 5x3 <= 12 3x1 + x2 + 4x3 <= 15 x1 + x3 = 11 and x1,x2,x3 >= 0 apply the Dual Simplex Method to recover feasibility.
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2...
Max Z = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2     ≤ 8 2x2 + 5x3     ≤ 12 3x1 + x2 + 4x3         ≤15 and x1,x2,x3≥0; Solve the LP you create by using the Simplex Method. You can use Big-M or Two-Phase Method if needed
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT